Recent Comments
-
Recent Posts
- Algorithmic Game Theory: Past, Present, and Future
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- Igor Pak: How I chose Enumerative Combinatorics
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Noga Alon and Udi Hrushovski won the 2022 Shaw Prize
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Past and Future Events
- Joshua Hinman proved Bárány’s conjecture on face numbers of polytopes, and Lei Xue proved a lower bound conjecture by Grünbaum.
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
Top Posts & Pages
- Algorithmic Game Theory: Past, Present, and Future
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- The Argument Against Quantum Computers - A Very Short Introduction
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Combinatorics, Mathematics, Academics, Polemics, ...
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- TYI 30: Expected number of Dice throws
- Game Theory 2021
RSS
Tag Archives: Turan’s problem
Polymath 10 post 6: The Erdos-Rado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
In earlier posts I proposed a homological approach to the Erdos-Rado sunflower conjecture. I will describe again this approach in the second part of this post. Of course, discussion of other avenues for the study of the conjecture are welcome. The purpose … Continue reading
The Combinatorics of Cocycles and Borsuk’s Problem.
Cocycles Definition: A -cocycle is a collection of -subsets such that every -set contains an even number of sets in the collection. Alternative definition: Start with a collection of -sets and consider all -sets that contain an odd number of members … Continue reading
A Small Debt Regarding Turan’s Problem
Turan’s problem asks for the minimum number of triangles on n vertices so that every 4 vertices span a triangle. (Or equivalently, for the maximum number of triangles on n vertices without a “tetrahedron”, namely without having four triangles on … Continue reading
Local Events, Turan’s Problem and Limits of Graphs and Hypergraphs
I will write a little about how hectic things are now here at HU, and make two (somewhat related) follow-ups on previous posts: Tell you about Turan’s problem, and about Balázs Szegedi’s lecture from Marburg dealing with limits of graphs and hypergraphs. Local Events … Continue reading
Posted in Combinatorics, Open problems
Tagged Extremal combinatorics, Graph limits, Quasirandomness, Turan's problem
4 Comments
Extremal Combinatorics I: Extremal Problems on Set Systems
The “basic notion seminar” is an initiative of David Kazhdan who joined HU math department around 2000. People give series of lectures about basic mathematics (or not so basic at times). Usually, speakers do not talk about their own research and not even … Continue reading