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NOTES AND COMMENTS

SOCIAL INDETERMINACY

BY GIL KALAI1

An extension of Condorcet’s paradox by McGarvey (1953) asserts that for every
asymmetric relation R on a finite set of candidates there is a strict-preferences voter
profile that has the relation R as its strict simple majority relation. We prove that
McGarvey’s theorem can be extended to arbitrary neutral monotone social welfare
functions that can be described by a strong simple game G if the voting power of each
individual, measured by the Shapley–Shubik power index, is sufficiently small.

Our proof is based on an extension to another classic result concerning the majority
rule. Condorcet studied an election between two candidates in which the voters’ choices
are random and independent and the probability of a voter choosing the first candidate
is p> 1/2. Condorcet’s jury theorem asserts that if the number of voters tends to infin-
ity then the probability that the first candidate will be elected tends to one. We prove
that this assertion extends to a sequence of arbitrary monotone strong simple games if
and only if the maximum voting power for all individuals tends to zero.

KEYWORDS: Social choice, information aggregation, Arrow’s theorem, simple
games, the Shapley–Shubik power index, threshold phenomena.

1. INTRODUCTION

IN THIS PAPER we extend to general voting schemes two basic results concerning the
majority rule. The first is McGarvey’s theorem, an extension of Condorcet’s paradox,
and the second is Condorcet’s jury theorem. Our extension of McGarvey’s theorem in
fact requires the extension of Condorcet’s jury theorem, thus revealing an unexpected
link between the two basic phenomena demonstrated by Condorcet.

We begin with an informal description of our results. Condorcet’s famous “paradox”
demonstrates that given three candidates A, B, and C, the majority rule may result in
the society preferring A to B, B to C, and C to A. Arrow’s impossibility theorem is an
extension of Condorcet’s paradox that asserts that under certain general conditions,
such nontransitive social preferences cannot be avoided under any nondictatorial vot-
ing method.

McGarvey (1953) proved another extension of Condorcet’s paradox: An asymmetric
relation R on a finite set X is a binary relation such that every pair of elements x� y ∈X
is ascribed one and only one of the relations xRy and yRx. McGarvey’s theorem asserts
that for every asymmetric relation R on a finite set of candidates, there is a group of in-
dividuals, each with a preference order relation on the candidates such that R coincides
with the outcome of simple majority voting between every pair of candidates.

McGarvey’s theorem is an early and simple manifestation of the phenomenon that
choice aggregated over many individuals may lead to arbitrary outcomes (or, in other
words, will not have any testable implications). We will refer to this phenomenon as
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“complete social indeterminacy.” Another example of this phenomenon is the well-
known Sonnenschein–Debreu–Mantel theorem concerning demand functions (see, for
example, Sonnenschein (1972)).

Our extension of McGarvey’s theorem is similar in spirit to Arrow’s theorem (Arrow
(1950)). Arrow’s theorem asserts that the only voting method that can force transitive
(or rational) social preferences concentrates all power in one individual. Our theorem
demonstrates that the only way to impose any restriction on social preferences is by
granting one individual a “substantial” amount of power, i.e. an amount of power that
is bounded away from zero regardless of the size of the society. The measure of power
that we will use is the Shapley–Shubik power index.

Condorcet’s jury theorem asserts that in an election between two candidates, say
Alice and Bob, if every voter votes for Alice with probability p > 1/2 and for Bob
with probability 1 − p and if these probabilities are independent, then as the number
of voters tends to infinity, the probability that Alice will gain the majority of votes
tends to one (see Young (1988)). Condorcet’s jury theorem can be interpreted as saying
that even if agents receive very poor (independent) signals indicating which decision is
correct, the majority rule will nevertheless result in the correct decision being taken
with a high probability if there are enough agents and each agent votes according to
the signal he receives. This phenomenon is referred to as “asymptotically complete
aggregation of information.” Our extension of Condorcet’s jury theorem asserts that
its conclusion remains valid when we replace simple majority with a general voting
method as long as the power of every voter is sufficiently small.

Both results require some natural restrictions on the general voting method. One
important restriction is neutrality, namely that the voting method is not a priori in fa-
vor of one of the alternatives. Our theorems also require strict social preferences. We
note that McGarvey’s theorem allows also to prescribe equality in the election’s out-
come between pairs of candidates. Similarly, strict social preferences are not required
in Arrow’s theorem. At a later stage we will examine biased voting methods and com-
ment on the situation in which social indifference is a possibility.

In order to describe our results formally we need to define the notions of a simple
game, the Shapley–Shubik power index, and a social welfare function. A simple game
(or a voting game) defined on a set N of players (voters) is described by a function v
that assigns to every subset (coalition) S of players the value ‘1’ or ‘0.’ We assume that
v(∅) = 0 and v(N) = 1. A candidate is elected if the set S of voters that voted for
him is a winning coalition in G, i.e., if v(S) = 1. Recall that a simple game is proper if
v(S)+v(N \S)≤ 1 for every coalition S, i.e. if the complement of a winning coalition is
a losing one. A simple game G is strong if v(S)+ v(N \ S)= 1 for every coalition S, i.e.
if it is proper and the complement of a losing coalition is a winning one. We will further
assume that the game G is monotone, i.e. the addition of an individual to a winning
coalition does not change it into a losing one.

The Shapley–Shubik power index assigns a real number between 0 and 1 to every
player in a simple game. This index measures the power of the player in the game.
A quick way to define the Shapley–Shubik power index (which differs from the original
axiomatic definition) is as follows: Suppose that there are n voters. We say that a voter i
is pivotal with respect to a set S of voters if v(S ∪ {i}) = 1 and v(S \ {i}) = 0. In other
words, player i can make a difference. For a probability distribution P on all subsets
of voters, the probability that a voter is pivotal is called the influence of the voter (with
respect to P). The Shapley–Shubik power index of a voter measures his influence under
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the following distribution: First, randomly choose a real number t uniformly between
0 and 1 and then let each player i belong to S with probability t (independently of other
players). The Shapley–Shubik power indices of all players sum up to one. For a simple
game G we denote by φ̄(G) the maximum value of the Shapley–Shubik power indices
of all players in G.

DEFINITION 1.1: A sequence (Gk)k=1�2���� of monotone strong simple games has di-
minishing individual power if

lim
k→∞

φ̄(Gk) = 0�

Consider an election rule described by a monotone strong simple game G for an
election between two candidates, Alice and Bob, and suppose that each voter votes for
Alice with probability p and for Bob with probability 1 − p and that the probabilities
are independent. Let Pp(G) denote the probability that Alice will be elected.

DEFINITION 1.2: A sequence (Gk)k=1�2���� of strong simple games has asymptotically
complete aggregation of information if for every p> 1/2,

lim
k→∞

Pp(Gk) = 1

(namely, the assertion of Condorcet’s jury theorem holds for this sequence).

Our extension of Condorcet’s jury theorem as presented in Section 3 asserts that
diminishing individual power implies aggregation of information. In fact, these two
properties are equivalent:

THEOREM 1.3: A sequence (Gk) of monotone strong simple games has an asymptoti-
cally complete aggregation of information if and only if it has the property of diminishing
individual power.

A social welfare function F is a map that associates an asymmetric relation R on the
alternatives to every profile of individual preferences. The social preference relation R
is not assumed to be a transitive relation. We require the condition of independence of
irrelevant alternatives (IIA), which states that the social preference between two alter-
natives a and b is determined by the individual preferences between a and b. We also
require the Pareto condition (P) that if every individual in a society prefers a to b, then
so will the society. A social welfare function is called neutral if it is invariant under per-
mutations of the alternatives. A neutral social welfare function that satisfies conditions
(IIA) and (P) can be described using a strong simple game G defined on the set of indi-
viduals. Thus, given the order relations R1�R2� � � � �Rn, which represent the individual
preferences, the social preference relation R is defined by the following rule: For two
alternatives a and b, aRb if the set of individuals for which aRib is a winning coalition
in G. For a social welfare function F define the image of F to be the set of asymmetric
relations that derive from F for some profile of individual preferences.

DEFINITION 1.4: A sequence (Gk) of strong simple games leads to complete social
indeterminacy if for every number m of alternatives and every asymmetric relation R
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on a set of m alternatives, there is k(m) so that for every k ≥ k(m), R is in the image of
the neutral social welfare function based on Gk (namely, the assertion of McGarvey’s
theorem holds for this sequence).

In Section 2 we prove the following theorem.

THEOREM 1.5: A sequence (Gk) of strong simple games with asymptotically complete
aggregation of information leads to complete social indeterminacy.

Theorems 1.5 and 1.3 lead to our main result:

THEOREM 1.6: A sequence (Gk) of monotone strong simple games with diminishing
individual power leads to complete social indeterminacy.

Theorem 1.6 can be reformulated as follows: For every number m of alternatives,
there is a real number δ = δ(m) > 0 such that if a neutral social welfare function F is
described by a monotone strong simple game G in which the Shapley–Shubik power
index of each individual is at most δ, then the image of F is the set of all asymmetric
preference relations on m alternatives.

One common way to prevent chaotic majority decisions is to introduce some bias
towards the status quo. For example, requiring that a law pass in both houses of par-
liament or requiring a supermajority (a proportion larger than half of all votes) or
requiring (as is the case of amendments to the U.S. Constitution) a majority of legis-
latures in three fourths of the states. In Section 4 we consider social welfare functions
that are a priori biased towards a default order relation and show that unless the bias
is overwhelming our extension of McGarvey’s theorem still holds. The setting we con-
sider is as follows: Let R0 be an order relation on a set of alternatives that represents
the default order relation. For a monotone proper simple game G, consider a social
welfare function F defined as follows: For two alternatives a and b such that aR0b, we
have bRa if and only if the set of voters that prefer b to a forms a winning coalition
in G. F is called the social welfare function based on G with a default order relation.

DEFINITION 1.7: A sequence (Gk)k=1�2���� of monotone proper simple games has
overwhelming bias if for every p< 1

lim inf
k→∞

Pp(Gk) = 0�

The sequence (Gk) has diminishing bias if for every p �= 1/2

lim
k→∞

(
1 − Pp(Gk)+ P1−p(Gk)

) → 0�

Definition 1.4 of complete social indeterminacy extends unchanged to social welfare
functions that are biased towards a default order relation.

THEOREM 1.8: In the model of social welfare functions biased toward a default order
relation, a sequence (Gk) of monotone proper simple games with diminishing individual
power that does not have overwhelming bias leads to complete social indeterminacy.
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In Section 4 we also comment on another way to avoid indeterminacy, namely by
allowing social indifference. Given a monotone proper simple game G, a neutral social
welfare function based on G on a set of m alternatives is defined as follows: For two
alternatives a and b we have aRb if and only if the set of voters that prefer a to b forms
a winning coalition in G. If G is not a strong simple game it may be the case that nei-
ther aRb nor bRa in which case we say that the society is indifferent between a and b.
When we extend the definition of complete social indeterminacy (Definition 1.4) un-
changed to this model we obtain the following theorem:

THEOREM 1.9: In the model of neutral social welfare functions with the possibility of
social indifference, a sequence (Gk) of monotone proper simple games with diminishing
individual power and diminishing bias leads to complete social indeterminacy ( for strict
social preference relations).

This is the case, for example, when Gk is a simple majority on k voters. Our proofs
of Theorems 1.5 and 1.3 extend unchanged to the case of diminishing bias. (For a se-
quence (Gk) of proper simple games to have asymptotically complete aggregation of
information, it is necessary that the bias be diminishing.) Note that our definition of
complete social indeterminacy deals only with asymmetric relations without the possi-
bility of indifference. In contrast to Theorem 1.9, only a few asymmetric relations are in
the image of neutral social welfare functions based on α-supermajority, for every fixed
α> 1/2 (see Alon (2002) and Salant (2003), and Section 4).

The proofs of our results are of independent interest. Theorem 1.5 is proved using
an elementary probabilistic argument that can be described as: “reduction to the case
of majority using sampling.” The proof of Theorem 1.3 uses recent results in probabil-
ity theory and combinatorics concerning threshold phenomena. Threshold phenomena
refer to situations in which the probability of an event (in our case Pp(G)) changes
rapidly as some underlying parameter (in our case p) varies within some interval.

2. FROM INFORMATION AGGREGATION TO INDETERMINACY

2.1. Social Welfare Functions

We consider a social welfare function that, given a profile R of n order relations Ri,
i = 1�2� � � � � n, on m alternatives, yields an asymmetric relation R for the society. Thus,
R = F(R1�R2� � � � �Rn) where F is the social welfare function. aRib states that the ith
individual prefers alternative a over alternative b. aRb indicates that the society prefers
alternative a over alternative b. The social preferences are not assumed to be transitive.

The condition of independence of irrelevant alternatives (IIA), states that for every
two alternatives a and b the individual preferences between a and b determine the
social preference between a and b. Formally, the set {i :aRib} determines whether aRb.
The social preference between a and b can thus be described by a strong simple game
Ga�b as follows: Let S be the set of individuals that prefer alternative a over alternative b
(i.e., S = {i :aRib}). S is a winning coalition for the game Ga�b if aRb.

The Pareto condition is another standard assumption that asserts that if all individ-
uals in a society prefer alternative a over b, then so will the society. This means that
in the game Ga�b for every two alternatives a and b, the set of all voters is a winning
coalition and the empty set of voters is a losing one.
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We will also assume that the social welfare function is monotone, which means that
if an individual who prefers alternative a over alternative b changes his preferences,
this will not result in the opposite change in the society’s preferences.

Finally, we assume that the social welfare function is neutral, namely that it is in-
variant to permutations of the alternatives. Assuming neutrality is equivalent to the
assertion that all simple games Ga�b are strong and identical. Therefore, a neutral so-
cial welfare function can be described in terms of a single strong simple game.

A convenient way to think about the function is as a rule for elections between two
candidates. There is a pool of several candidates and every individual has an order rela-
tion on all candidates. We wish to understand the possible outcomes of two-candidate
elections between each pair of candidates within the pool.

2.2. The Proof of Theorem 1.5

The basic idea of the proof of Theorem 1.5 is simple: We have a sequence of strong
simple games (Gk) such that for every p > 1/2� limk→∞ Pp(Gk) = 1. Suppose that
Gk is a simple game with n(k) players. We wish to realize an asymmetric relation R
on m alternatives with a social welfare function based on Gk for large enough k. We be-
gin with a society (of n0 voters), whose existence is guaranteed by McGarvey’s theorem,
that realizes R as its strict majority preference relation. Next, we sample n(k) voters
(with repetitions) from this society. Consider two alternatives a and b such that aRb.
The probability p that a voter will prefer alternative a over alternative b is bounded
away from 1/2. In fact, p ≥ 1/2 + 1/2n0 . However, Pp(Gk) tends to 1. Therefore, as
k tends to infinity, the society will prefer a over b with a probability that approaches 1.
Since this is true for every pair of alternatives, we deduce that when k is large enough,
the social preference relation will be R with a high probability.

To present the formal proof of Theorem 1.5 we require the following definition: Let
R = (R1�R2� � � � �Rn0) be a profile of order relations on a fixed set X of m alternatives
and let R be an asymmetric relation on X. We say that the profile R realizes R with
quality t if for every two alternatives a and b in X such that aRb we have

|{i :aRib}| ≥ (1/2 + t)n0�

For example, the profile consisting of the three order relations a > b> c, b > c > a, and
c > a > b realizes a cyclic relation on the three alternatives a, b, and c with quality 1/6.

Using the notion of the quality of a representation of an asymmetric relation, the
statement and proofs of representations with arbitrary strong simple games become
quite straightforward:

THEOREM 2.1: Let R be an asymmetric order relation on m alternatives and suppose
that R can be realized by some profile of order relations with quality t. Let G be a strong
simple game that satisfies

Pp(G) > 1 − 1
/(

m

2

)
� for everyp� p≥ 1/2 + t�(2.1)

Then R is in the image of a social welfare function on m alternatives based on G.

Let t(m) be the largest real number such that every asymmetric relation R on m al-
ternatives can be realized by some profile with quality t(m).
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COROLLARY 2.2: Let G be a strong simple game that satisfies

Pp(G) > 1 − 1
/(

m

2

)
� for every p� p≥ 1/2 + t(m)�(2.2)

Then every asymmetric relation on m alternatives is in the image of a social welfare function
on m alternatives based on G.

REMARK: Theorems 2.1 and 1.5 do not require monotonicity. If G is monotone we
can simply replace relation (2.1) by P1/2+t (G) > 1 − 1/

(
m

2

)
�

DERIVATION OF THEOREM 1.5: McGarvey’s theorem implies that t(m) > 0. There-
fore combined with McGarvey’s original result, Corollary 2.2 implies Theorem 1.5.
Indeed, in order to derive Theorem 1.5 note that a sequence (Gk) with asymptotically
complete aggregation of information satisfies limk→∞ Pp(Gk) = 1 for every p > 1/2
and therefore relation (2.2) is satisfied when k is sufficiently large.

PROOF OF THEOREM 2.1: Let G be a strong simple game with n players that satisfies
relation (2.1) and let F be the corresponding social welfare function when there are m
alternatives. Let R0 = (R1�R2� � � � �Rn0) be a profile of n0 order relations that realizes
the asymmetric relation R with quality t. Consider a random voter profile R for n indi-
viduals for which the order preference relation for every individual is equal to Rj with
probability 1/n0, j = 1�2� � � � � n0, and these probabilities are independent. For two al-
ternatives a and b, if aRb then the probability p that the ith player will prefer a to b is at
least 1/2 + t. The probability that the society will prefer a to b is Pp(G). Relation (2.1)
asserts that if p ≥ 1/2 + t, then Pp(G) > 1 − 1/

(
m

2

)
. We conclude that the probability

that the social preferences will coincide with R is larger than 1 − (
m

2

)
/
(
m

2

) = 0. Q.E.D.

REMARKS: 1. McGarvey’s proof of his theorem (see Section 4) implies that t(m) ≥
1/m(m − 1) and this bound can be increased to c logm/m (for some constant c) us-
ing a subsequent result by Erdős and Moser (1964). Alon (2002) recently showed that
c1/

√
m ≤ t(m) ≤ c2/

√
m, where c2 > c1 > 0 are constants. (See Section 4.)

2. The proof of Theorem 1.5 applies unchanged to neutral social welfare functions
based on proper simple games. Of course, in order to have asymptotically complete
aggregation of information it is necessary to have diminishing bias.

3. DIMINISHING POWER AND AGGREGATION OF INFORMATION

Consider an election between two candidates, Alice and Bob, where the election rule
is given by a monotone strong simple game G= 〈N�v〉. The game G describes the way
in which the individual preferences between the two candidates aggregate. Now we will
discuss how the voters are going to vote.

We suppose that the ith voter receives a signal si where si = 1 with probability p >
1/2, si = 0 with probability 1 − p and the signals are independent. The signal si = 1
means “vote for Alice” and we assume that voters act according to the signals they
receive. Therefore, the set S of voters who vote for Alice is given by S = {i : si = 1}. The
set S is a random set of players such that for each player i, i ∈ S with probability p,
i /∈ S with probability 1 − p and the events “i ∈ S” are independent for i = 1�2� � � � � n.
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For a specific set S ⊂ N , the probability that the set of Alice’s voters is precisely S is
denoted by Pp(S) and is equal to p|S|(1 −p)n−|S|. Denote by Pp(G) the probability that
the random set S of Alice’s voters is a winning coalition, i.e. the probability that Alice
wins the election is:

Pp(G) =
∑

{Pp(S) :v(S)= 1}�

REMARK: It is often useful to regard the payoff function v as a function defined
on the vector of signals (s1� s2� � � � � sn) as follows: v(s1� s2� � � � � sn) = v(S), where S =
{i : si = 1}. Functions from the set of 0–1 vectors of length n to the set {0�1} are called
Boolean functions. Most of the results we use in this section originally appeared in the
literature in the language of Boolean functions rather than simple games.

The proofs of the following two simple lemmas are presented in the Appendix.

LEMMA 3.1: If G is a proper simple game, then for 0 <p< 1,

Pp(G) ≤ 1 − P1−p(G)�(3.1)

Equality holds if and only if G is strong.

LEMMA 3.2: If G is a monotone simple game, then the function Pp(G) is a strictly
monotone continuous function of p in the interval [0�1].

Let ε, 0 < ε< 1/2, be a real number. Since Pp(G) is a strictly monotone and contin-
uous function of p, there is a unique value of p denoted by p1 such that Pp1(G) = ε.
There is also a unique value of p denoted by p2 such that Pp2(G) = 1 − ε. The interval
[p1�p2] is called a threshold interval and its length p2 − p1 is denoted by Tε(G). The
value pc = pc(G), at which Ppc (G) = 1/2, is called the critical probability for G. It fol-
lows from relation (3.1) that if G is a proper simple game, then pc ≥ 1/2 with equality
if and only if G is strong.

We now require the important notion of influence.2 The influence of the kth player
on G, denoted by I

p
k (G), is the probability that the player is pivotal, i.e. the probability

that for a random coalition S (according to the probability distribution Pp) that does
not contain k, S is a losing coalition and S ∪ {k} is a winning one. The influence of a
player is a normalized version of the correlation between his vote and the election’s
outcome. The total influence Ip(G) equals

∑n
k=1 I

p
k (G).

Let φk(G) denote the Shapley–Shubik power index for the kth player in G. The
following integral representation of φk(G) is due to Owen (1988):

φk(G) =
∫ 1

0
I
p
k (G)dp�

2The mathematical study of pivotal agents and influences is fundamental not only in the con-
text of power indices in game theory, but also in other areas of economics (see, for example,
Pesendorfer and Swinkels (2000) and Al-Najjar and Smorodinsky (2000)), as well as in reliability
theory, statistical physics, probability theory and statistics, distributed computing, and complexity
theory.
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Owen’s representation of the Shapley–Shubik power index coincides with the de-
scription given in the Introduction but differs from Shapley’s original axiomatic
definition. (The Banzhaf index of the kth player equals I

1/2
k (G).) Define φ̄(G) =

max(φ1(G)�φ2(G)� � � � �φn(G)).
Our first task is to prove that if the threshold interval is small, then so is the power

of every individual.

THEOREM 3.3: Let G be a monotone strong simple game. If Tε(G) ≤ γ, then φ̄(G) ≤
γ + 3

√
ε.

PROOF: Suppose that Tε(G) ≤ γ or, in other words, Pp(G) < ε if p < 1/2 − γ/2. It
follows from the definition that Ipk (G) ≤ min(1�Pp(G)/p). Therefore,

φk(G) =
∫ 1

0
I
p
k (G) = 2

∫ 1/2

0
I
p
k (G)

≤ 2
∫ √

ε

0
1 + 2

∫ 1/2−γ/2

√
ε

Pp(G)/
√
ε+ 2

∫ 1/2

1/2−γ/2
1 ≤ 2

√
ε+ √

ε+ γ�

Q.E.D.

Our main task is to prove that if the power of every individual is small, then the
threshold interval must also be.

THEOREM 3.4: For every ε�γ > 0 there exists δ > 0 such that for every monotone strong
simple game G if φ̄(G) ≤ δ, then Tε(G) ≤ γ�

Theorems 3.3 and 3.4 provide the two directions of the equivalence in Theorem 1.3
between diminishing individual power and asymptotically complete aggregation of in-
formation. We note that the assertion of Theorem 1.3 and the proof extend unchanged
to the case of monotone proper simple games with diminishing bias. The proof of The-
orem 3.4 extends to the following more general result. This generalization will be useful
in Section 4 where we study social welfare functions that are biased towards a default
order relation.

THEOREM 3.5: For every a� ε�γ > 0 there exists δ > 0 such that for every monotone
simple game G if φ̄(G) ≤ δ and a ≤ pc(G) ≤ 1 − a, then Tε(G) ≤ γ�

I will now present the mathematical concepts and results required for proving The-
orem 3.4. We first need the following fundamental result:

PROPOSITION 3.6 (Russo’s lemma; see Grimmett (1989)):

dPp(G)

dp
= Ip(G)�(3.2)

Russo’s lemma implies that if the total influence for every p in the threshold interval
is large, then the threshold interval itself must be small. The rather simple proof is
presented in the Appendix.

Next, we require a result that shows that for a specific value of p, if all individual
influences Ipk (G) are small, then their sum Ip(G) is large.
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THEOREM 3.7 (Talagrand (1994)): For some constant C > 0, and every positive real
δ > 0, if G is a monotone simple game and if Ipk (G) ≤ δ for every k= 1�2� � � � � n, then

Ip(G) ≥ C log(1/δ)Pp(G)
(
1 − Pp(G)

)
�(3.3)

I will now present the outline of the proof of Theorem 3.5 leaving the full details
to the Appendix. Set x = log(1/δ). Talagrand’s theorem asserts that if all influences
I
p
k (G) for every p are smaller than δ and if p belongs to the threshold interval where
ε ≤ Pp(G) ≤ 1−ε, then the sum of influences Ip(G) is larger than C(ε/2)x. By Russo’s
lemma the sum of influences is the slope of the function Pp(G) (as a function of p).
Therefore, if for every p, Ipk (G) < δ, the size of the threshold interval Tε(G) is at most
(1/C)(2/ε)(1/ log(1/δ)). We conclude that if ε is fixed, then as δ tends to zero, so
does Tε(G).

This is quite close to the statement of Theorem 3.5. However, one problem still
remains: In order to apply Talagrand’s theorem we need to assume that the individual
influences are small for every p, which is stronger than the assumption we have made.
When we assume that the Shapley–Shubik power index is small, this only means that
the influences I

p
k (G) are small when we average over p. To complete the proof we

need to exclude the possibility that the threshold interval [p1�p2] (or a large chunk of
it) is the union of many small parts such that in every part there is a different player
with a high degree of influence. In the proofs of Theorems 3.4 and 3.5 presented in
the Appendix, we make some additional observations that will enable us to relate the
influences for one value of p to the influences for the entire threshold interval.

We conclude this section with a simple example of a sequential voting procedure that
demonstrates the economic relevance of Theorem 1.3 on its own. Theorem 1.3 seems
especially useful when simple games are used to model not just the voting method
but more involved situations of aggregation. The intuition that in order to reduce the
probability of a mistake we should reduce the individual influences is consistent with
various real-life procedures for collective decisions.

Consider a committee (with an odd number n of members) set up to choose between
Alice and Bob in which the members openly vote according to some order and the deci-
sion is made by simple majority. Suppose that each member of the committee receives
an independent signal si such that si = 1 with probability p. However, the vote of a
committee member depends also on earlier votes. For example, suppose that for every
committee member i there is a set Si of other members whom he respects and who
voted previously and that he will vote against his signal if more than two thirds of Si

voted the opposite way. Although the voting method is simple majority, Condorcet’s
jury theorem does not apply since the probabilities of individuals voting for Alice are
not independent. The outcome of the voting process as a function of the original signals
(rather than the actual votes) can be described by a (complicated) strong simple game
and since the original signals are independent our theorem applies.

4. BIAS AND INDIFFERENCE

In this section we study social welfare functions based on proper simple games. We
first study social welfare functions that are biased towards a default order relation and
later comment on neutral social welfare functions with the possibility of indifference.

We return now to McGarvey’s theorem and examine whether we can achieve some
restrictions on the social preferences by introducing a bias towards a default order
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relation. Let G be a proper monotone simple game. Let R0 be an order relation on a set
of m alternatives that represents the default order relation. We will assume from now
on (without loss of generality) that the set of m alternatives is A = {a1� a2� � � � � am} and
that R0 is defined by aiR0bj if and only if i < j. We consider a social welfare function
biased towards the default order relation R0. Recall that F is defined as follows: For
two alternatives a and b such that aR0b, we have bRa if the set of voters that prefer
b to a forms a winning coalition in G.

Extreme bias can reduce indeterminacy. An example of a biased social welfare func-
tion that implies some restrictions on the social preferences is the case where in order
to reverse the default relation between two alternatives we require a unanimous vote
for the opposite relation. Here, no matter how large the society, if for the default pref-
erence relation R0, aR0b, and bR0c, while for the social preference relation R, bRa,
and cRb, then it must be the case that cRa. In other words, the social preferences that
violate the default order relation must obey transitivity. Therefore, for social welfare
functions based on unanimous voting not every asymmetric relation can be realized.

Let α, 1/2 < α < 1, be a real number. Define an α-supermajority game as a game
with a set N of players in which the winning coalitions are subsets S of N that sat-
isfy |S| > α|N|. McGarvey’s theorem extends to α-supermajority games. In fact, the
following more general statement is true: Let (dn) be a sequence of positive integers
satisfying dn < n/2. Consider the sequence (Gn) of games where Gn has n players and
the winning coalitions in Gn are subsets S of players such that |S| > n − dn. In this
case the assertion of McGarvey’s theorem will apply if limn→∞ dn = ∞. To realize an
asymmetric relation R on m alternatives we can simply apply McGarvey’s theorem to
a simple majority social welfare function with 2dn + 1 voters (for large enough n) and
add n− 2dn − 1 voters whose preference relation is the opposite linear order to R0.

To understand the source of the difference between supermajority and the unani-
mous rule we will need the following definition:

DEFINITION 4.1: A sequence (Gk) of proper monotone simple games has the sharp
threshold property if for every ε > 0

Tε(Gk) = o
(
1 −pc(Gk)

)
�(4.1)

This definition can be motivated by quoting a (rather simple) theorem due to
Bollobas and Thomason (1987) that asserts that for every monotone simple game G,
Tε(G) = O(min(pc(G)�1 −pc(G))).

If Gn is the α-supermajority game with n players, 1/2 < α < 1, then the sequence
(Gn) has the sharp threshold property. (This follows from the law of large num-
bers: The weak law of large numbers asserts that limn→∞ Pp(Gn) = 0 for p < α and
limn→∞ Pp(Gn) = 1 for p> α. Therefore, limn→∞ pc(Gn) = α and for every fixed ε > 0,
limn→∞ Tε(Gn) = 0.) On the other hand, if Gn represents the unanimous rule on n
players, then the sequence (Gn) does not have a sharp threshold. (Pp(Gn) = 1/2 for
p= 1 − s/n, where s ≈ loge 2, and P1−λs/n(Gn) ≈ (1/2)λ is bounded away from zero.)3

Theorem 1.5 extends to the following result:

3The discontinuity we observe at α= 1 for α-supermajority appears to be related to similar dis-
continuities described in the literature and the connection to the sharp threshold property may
extend to other such cases as well. For example, Dasgupta and Maskin (1997) showed that the do-
main on which an α-supermajority rule leads to transitive social preferences gets discontinuously
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THEOREM 4.2: If a sequence (Gk) of monotone proper simple games has the sharp
threshold property, then it leads to complete social indeterminacy.

PROOF OF THEOREM 1.8: If the sequence Gk does not have overwhelming bias, then
for some q < 1, lim infk→∞ Pq(Gk) > 0. It follows from the theorem of Bollobas and
Thomason that pc(Gk) is bounded away from one. However, when pc(Gk) is bounded
away from one, then having a sharp threshold simply means that limn→∞ Tε(Gk) = 0.
Theorem 3.5 asserts that if pc(Gk) is bounded away from one, the property of dimin-
ishing individual power implies the sharp threshold property. Theorem 1.8 now follows
from Theorem 4.2. Q.E.D.

Theorem 1.8 can be described as follows: The only two ways to constrain the social
preferences when the number of individuals is large is either to introduce strong bias
among the individuals, namely to give one individual a substantial amount of power or
to introduce an overwhelming bias among the alternatives.

In order to prove Theorem 4.2 we present a quantitative version that extends The-
orem 2.1. Let 1 > α ≥ 1/2 and set β = 1 − α. We say that an asymmetric relation R
on A is realized by α-supermajority with quality q if there is a collection of voters and a
voter profile R with the following property: For any two alternatives a and b such that
bR0a, if aRb then more than a fraction of α+ q of the voters prefer a to b, and if bRa
then less than a fraction of α − q of them prefer a to b. Recall that t(m) was defined
as the largest real number such that every asymmetric relation R on m alternatives can
be realized by simple majority with quality t(m). By our simple observation concern-
ing supermajority, it follows that every asymmetric relation on m alternatives can be
realized by α-supermajority with quality βt(m).

THEOREM 4.3: Let G be a monotone simple game. Set α = pc(G) and suppose that
α≥ 1/2. Suppose that

Pα+t(G) > 1 − 1
/(

m

2

)
� and(i)

Pα−t(G) < 1
/(

m

2

)
�(ii)

Let R be an asymmetric relation on m alternatives that can be realized by
α-supermajority with quality t. Then R is the image of the social welfare function based
on G biased toward the default order relation R0.

The proof is identical to that of Theorem 2.1. To deduce Theorem 4.2 note
first that there is no loss in generality in assuming that αk = pc(Gk) ≥ 1/2 for
every k. Set βk = 1 − αk. A sequence (Gk) with the sharp threshold property satisfies
limk→∞ Pαk+cβk

(G) = 1 and limk→∞ Pαk−cβk
(G) = 0 for every constant c > 0. Therefore,

if we let c = t(m) and use the fact that every asymmetric relation R can be realized
by αk-supermajority with quality t(m) · βk, we realize that relations (1) and (2) are
satisfied when k is sufficiently large.

larger at α = 1. Feddersen and Pesendorfer (1998) considered discontinuity of asymptotically
complete aggregation of information for strategic voting.
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REMARK: When G is an α-supermajority with n voters, then the law of large num-
bers implies that pc(G) ≈ α. The central limit theorem implies that

Tε(G) ≈ C(1/
√
n)

√
log(1/ε)�(4.2)

for some constant C . It follows that for biased rules similar to those used in practice,
such as, “In at least three quarters of the states the default must be voted out by at
least two thirds of the legislators,” the threshold behavior can be computed precisely.
In such cases, where there is a bounded number of layers and in each layer super-
majority is used, the computation of the threshold interval, Theorem 2.1, and Alon’s
estimate t(m) ≥ c1/

√
m implies that every asymmetric relation R on m alternatives can

be realized by no more than Cm logm voters (or legislators) where C is a constant that
depends on the precise rule.

Finally, we make a few comments concerning neutral social welfare functions F with
the possibility of indifference. A partially asymmetric relation R on a finite set X is a
binary relation such that every pair of elements x� y ∈ X is ascribed at most one of the
relations xRy and yRx. Given a monotone proper simple game G and a set A of alter-
natives, the society prefers alternative a over alternative b if the set of voters that prefer
a to b forms a winning coalition. The image of such a neutral social welfare function is a
set of partially asymmetric relations. There are several ways to extend the notion of in-
determinacy: Can we realize every asymmetric relation? Can we realize every partially
asymmetric relation? Theorem 1.9 extends our result concerning asymmetric relations
to the case of monotone proper simple games with diminishing bias and as we note in
Sections 2 and 3 the proofs, which are probabilistic, extend to this case unchanged.

(i) We already encounter the possibility of social indifference when we consider sim-
ple majority with an even number of voters. In this case we have diminishing bias
in a very strong sense since the probability of a tie (1 − Pp(G) − P1−p(G)) tends to
zero even for p = 1/2. McGarvey’s original theorem also allows us to prescribe in an
arbitrary way the cases of equality. McGarvey’s proof relies on the following simple
observation: Aggregating two voters with order relations 1 <1 2 <1 3 <1 · · · <1 m and
m <2 m − 1 <2 · · · <2 3 <2 1 <2 2 results in a situation in which alternative ‘2’ is pre-
ferred to alternative ‘1’ but there is indifference between every other pair. Consider a
partially asymmetric relation R on the set of m alternatives. For every pair of alterna-
tives a and b, if aRb we can define order relations for two voters according to which
both prefer a to b but have the opposite preferences on every other pair of alternatives.
Therefore, for every partially asymmetric preference relation R on m alternatives, com-
bining such pairs of voters for every two alternatives a and b such that aRb implies that
R can be realized and by at most m(m− 1) voters.

(ii) For social welfare functions based on α-supermajority for 1/2 < α < 1, there
are severe restrictions on the social preferences. For example, if α > 3/4 then it is
clearly impossible that the society will prefer a to b, b to c, and c to a. Alon (2002)
proved that there are two constants c2 > c1 > 0 such that every asymmetric relation
R on m alternatives can be realized by (1/2 + c1/

√
m)-supermajority and there is an

asymmetric relation R on m alternatives that cannot be realized by (1/2 + c2/
√
m)-

supermajority. (It is not known when all partially asymmetric relations can be realized.)
For a fixed t > 0, the class of asymmetric relations on m alternatives that can be realized
by (1/2 + t)-supermajority was studied by Salant (2003).
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Realizing an asymmetric relation R by an (1/2 + t)-supermajority, t > 0, is rarely
possible when t is fixed and the number of alternatives grows. Suppose that an asym-
metric relation R on m alternatives is based on (1/2 + t)-supermajority. Theorem 2.1,
combined with the threshold properties of the majority function given by relation (4.2),
asserts that R is realized with high probability by a simple majority of the preferences
of T random voters when T = 10 logm/t2. However, the number of relations that can
be so realized is at most the number of order preference relations for these T individ-
uals, which is m!T ≤ exp(10m(logm)2/t2). For a fixed t > 0 and large m, this quantity
is much smaller than the total number of asymmetric relations, which is 2(

m
2).

(iii) Let (Gn) be a sequence of proper simple games with diminishing individual
power. If limn→∞ pc(Gn) = 1/2 then (Gn) has diminishing bias and the image of a neu-
tral social welfare function on m alternatives based on (Gn) will contain for a large n all
asymmetric relations. Suppose next that limn→∞ pc(Gn) = α > 1/2 and α < 1, namely,
that the bias is neither diminishing nor overwhelming. Let Fn be the neutral social wel-
fare functions based on Gn on a set A = {a1� a2� � � � � am} of m alternatives. Consider
the following

(
m

2

)
questions: Is aiRaj , 1 ≤ i < j ≤ m? Theorem 1.8 asserts that when

n is large any sequence of length
(
m

2

)
consisting of the words ‘yes’ and ‘no’ can serve as

the sequence of answers for some voter profile. This implies that the image of Fn con-
tains at least 2(

m
2) partially asymmetric relations (among all 3(

m
2) partially asymmetric

relations). On the other hand, as we remarked above, for α-supermajority the image of
Fn contains only a “small” number of asymmetric relations.
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APPENDIX

Overview

Most of the Appendix is devoted to the proofs of Theorems 3.4 and 3.5. With the exception
of Talagrand’s theorem, which we stated in Section 3, and a related theorem by Friedgut that we
will state below, our presentation is self-contained. The reader is encouraged to consult the liter-
ature (Talagrand (1994), Kahn, Kalai, and Linial (1988), Friedgut and Kalai (1996), and Friedgut
(1998)) for a wider perspective on the topic discussed here and for the proofs of Talagrand’s and
Friedgut’s results. The proofs of these two theorems are quite accessible and rely on harmonic
analysis on the discrete n-dimensional cube. (Note that the terminology used in these papers
differs from our own.)

Russo’s Lemma and Other Basic Facts

PROOF OF LEMMA 3.1: Let G= 〈N�v〉 be an arbitrary simple game. Consider an election be-
tween Alice and Bob and suppose that Alice wins if the voters for Alice form a winning coalition
in G. Now consider a simple game G′ = 〈N�v′〉 defined by v′(S) = 1 if and only if v(N \ S) = 0.
A winning coalition for G′ is a coalition whose complement is losing in G. Suppose that every
voter independently votes for Alice with probability p. The probability that Alice wins is Pp(G).
The probability that Alice does not win is precisely the probability that the coalition of voters
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that did not vote for Alice is a winning coalition in G′. Since every voter does not vote Alice with
probability 1 − p, this probability is P1−p(G

′). Therefore Pp(G) + P1−p(G
′) = 1. It is easy to see

that G is proper if and only if G⊂ G′ , which yields relation (3.1). The game G is strong if and only
if G= G′ and this implies that given that G is proper, for every p�0 <p< 1, we have equality in
relation (3.1) if and only if G is strong. Q.E.D.

PROOF OF LEMMA 3.2: Let 0 <p< q< 1. Consider a random subset S of N according to the
probability measure Pp. Let R be a random subset of N according to the probability measure Pr

where r = (q − p)/(1 − p). Consider T = S ∪ R. The probability that a player i belongs to T
is 1 − (1 − p)(1 − r) = q and the events i ∈ T are independent. Pp(G) is the expected value
of v(S) and Pq(G) is the expected value of v(T ). By monotonicity, v(T ) ≥ v(S) and therefore
Pq(G) ≥ Pp(G). Since there is a positive probability that S = ∅ and T = N , we conclude that
Pq(G) > Pp(G). (The monotonicity of Pp(G) also follows from Russo’s lemma, but the direct
argument used here will serve us again in the proof of Theorem 1.3.) Q.E.D.

PROOF OF RUSSO’S LEMMA: Let G= 〈N�v〉 be a fixed simple game on the set N of n players.
Suppose that N = {1�2� � � � � n} and consider a general product probability distribution on subsets
S of N defined as follows:

Pp1�p2�����pn (S)=
∏

{pi : i ∈ S} ·
∏

{(1 −pi) : i /∈ S}�

Let A(p1�p2� � � � �pn) = ∑{Pp1�p2�����pn (S) :v(S) = 1}� Let Ik(p1�p2� � � � �pn) be the probability
that the kth player is pivotal according to the probability measure Pp1�p2�����pn (S). Thus, Ipk (G) =
Ik(p�p� � � � �p). Note that A(p1�p2� � � � �pn) is a linear function of pk and

∂A(p1�p2� � � � �pn)/∂pk = Ik(p1�p2� � � � �pn)�

Without loss of generality we will demonstrate this relation for k = n. First note that

A(p1�p2� � � � �pn)

=
∑

S⊂{1�2�����n−1}

(∏
i∈S

pi ·
∏

i∈{1�2�����n−1}\S
(1 −pi)

)(
v(S)(1 −pn)+ v(S ∪ {n})pn

)
�

Next note that for those subsets S where v(S)= v(S ∪ {n}) the summand does not depend on pn .
The contribution of a set S for which v(S ∪ {n}) = 1 and v(S) = 0 is

∏{pi : i ∈ S} · ∏{(1 −
pi) : i ∈ {1�2� � � � � n − 1} \ S} · pn and the derivatives with respect to pn sum up precisely to
In(p1�p2 � � � �pn).

Russo’s lemma follows from the chain rule: Write B(p) = (p�p� � � � �p) (n times) and
C(p) = Pp(G). Here A : [0�1]n → [0�1], B : [0�1] → [0�1]n , and C : [0�1] → [0�1]. C(p) is the
function we want to differentiate. Note that C(p) = A(B(p)) and that dB/dp = (1�1� � � � �1)
is the all ones vector of length n. Therefore according to the chain rule the derivative of C at
the point p is equal to

∑n
k=1 ∂A/∂pk(p�p� � � � �p)� which is equal to

∑n
k=1 I

p
k (G) = Ip(G) as

required. Q.E.D.

Proof of Theorem 1.3

We require the following result by Friedgut (1998) that asserts (in our terminology) that a
simple game with a small influence (w.r.t. Pp) is determined with high probability (w.r.t. Pp) by
a small set of players.

THEOREM A.1: For every real number z > 0�A > 1, and γ > 0, there is C = C(γ�A�z) such
that if z ≤ p ≤ 1 − z, the following assertion holds: For a monotone simple game G = 〈N�v〉, if
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Ip(G) ≤ A then there exists a collection S of at most C players in N and a monotone simple game
H = 〈S� v0〉 such that

Pp{T ⊂ N :v(T ) �= v0(T ∩ S)} < γ�(A.1)

PROOF OF THEOREM 3.4: Since by Russo’s lemma Ip(G) = dPp(G)/dp, Theorems
3.7 and A.1 give conditions for the derivative of Pp(G) to be large at a given point p. In or-
der to prove that the threshold interval is small, we need to move from local information (for
specific values of p) to global information for the entire threshold interval. The following crucial
lemma was proved in collaboration with Ehud Friedgut:

LEMMA A.2: Let G be a monotone simple game. Let p < q ∈ [1/3�2/3]. Suppose that Pp(G) ≥
a > 0, Ip(G) ≤ A, and that Pq(G) ≤ b < 1. Put γ = a(1−b)/4. Let S be the set of players guaranteed
by Theorem A.1. Then max{Iqk(G) :k ∈ S} ≥ U where U > 0 depends only on a�A, and b.

PROOF: Theorem A.1 guarantees the existence of a set S of at most C(γ�A) players and a
simple game H = 〈S� v0〉 such that

Pp{T ⊂ N :v(T ) �= v0(T ∩ S)} < γ� Q.E.D.

CLAIM:

Pp{T :v(T ∪ S)= 1} ≥ 1 − (2/a)γ�

PROOF OF THE CLAIM: Let P0
p and P1

p be the probability distributions induced from Pp on
subsets of S and on subsets of N \ S, respectively. Note that whether v(T ∪ S) = 1 depends only
on T \ S so we have to show that

P1
p{T :T ∩ S = ∅� v(T ∪ S)= 1} ≥ 1 − (2/a)γ�

Now, P0
p{R ⊂ S :v0(R) = 1} ≥ a/2 and therefore if T is disjoint from S and v(T ∪ S) = 1, then

P0
p{R :R ⊂ S� v(T ∪R) �= v0(R)} ≥ a/2. It follows that indeed

P1
p{T : T ∩ S = ∅� v(T ∪ S)= 1} ≥ 1 − (2/a)γ�

We return now to the proof of the lemma. Consider the following operation: Start with a
random subset R of players according to Pp. For j /∈R add j to R with probability (q−p)/(1−p).
Let R∗ be the resulting set of players. The probability that v(R∗) = 0 is at least 1 − b and the
probability that in addition v(R∗ ∪ S) = 1 is at least 1 − b − (2/a)γ (since v(R ∪ S) = 1 implies
v(R∗ ∪ S) = 1). This means that when we draw a coalition R∗ at random according to Pq, the
probability that v(R∗) = 0 and v(R∗ ∪ S)= 1 is at least 1 − b− (2/a)γ. Now we can examine the
effect of adding the players in S one by one. Since q ∈ [1/3�2/3] we deduce that max{Iqk(G) :k ∈
S} ≥ C−13−C(1 − b− (2/a)γ), as required. Q.E.D.

We return now to the proof of Theorem 3.4 We can assume that γ ≤ 1/10. Suppose that
Tε(G) > γ. By Russo’s lemma (and the mean-value theorem) there exists p in [1/3�2/3] such
that Ip(G) ≤ A, where A = 3/γ. Since G is a strong simple game we can assume that p ≤ 1/2. By
Theorem A.1, there is a set S of players and a simple game H = 〈S� v0〉 such that relation (A.1)
holds. The cardinality of S is bounded by a function C of A and ε. By our lemma, for every q ≥ p
in the threshold interval there is a player k ∈ S such that Iqk(G) ≥ U , where U depends only on
ε and A. Since for every q ≥ p in the threshold interval there is a player in S whose influence is
at least U , we conclude that φ̄(G) is larger than (1/2)γC−1U . Q.E.D.

The proof of Theorem 3.5 is identical. Simply replace the interval [1/3�2/3] with an appropri-
ate interval around the critical probability of the game.
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REMARKS: 1. The proof shows that if all influences Ipk (G) are sufficiently small for some p in
the threshold interval (and in particular for p = 1/2), then the threshold interval itself is small. In
particular, diminishing individual power according to the Banzhaf power index also implies (but
is not equivalent to) asymptotically complete aggregation of information.

2. A simple game is anonymous if the game is invariant under all permutations of the players.
We define a simple game to be weakly anonymous if “every two players are identical.” In formal
terms this means that the game is invariant under a transitive group of permutations on the
players. Simple majority (on an odd number of voters) is the only anonymous strong simple game
although the family of weakly anonymous strong simple games is quite rich. Examples include
electoral voting systems such as that in the US where all states have the same number of voters
and electors. For weakly anonymous strong simple games with n players, the upper bound on the
threshold interval is

Tε(G) ≤ C log(1/ε)/ logn�(A.2)

and this bound is tight (see Friedgut and Kalai (1996)).
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