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Congratulations Jean and Terry!!!
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Harmonic Analysis for Combinatorics and Theoretical
Computer Science
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Harmonic Analysis for Combinatorics and Theoretical
Computer Science - three directions

I I. Pseudorandomness and structure

Example: Roth’s theorem on 3-terms arithmetic progressions

Tools: Parseval, Hardy-Littlewood circle method, quadratic and
higher Fourier analysis,...

Applications: extremal combinatorics, additive number theory and
its many own applications, probability theory, theoretical computer
science, cryptography
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Harmonic Analysis for Combinatorics and Theoretical
Computer Science - three directions(cont.)

I II. Isoperimetry

Example: Kahn-K.-Linial (1988) (KKL) theorem

Tools: Parseval, Hypercontractivity/log Sobolev

Applications: extremal combinatorics, probability theory and
random graphs, computational complexity, and theoretical
computer science, game theory

Gil Kalai Analysis of Boolean Functions



Harmonic Analysis for Combinatorics and Theoretical
Computer Science - three directions (cont.)

I III. Bounds on Error-Correcting Codes

Example: McEliece, Rodemich, Rumsey, Welch theorem

Tools: Parseval, Delsarte linear programming method,
hypergeometric functions.

Applications: Error-correcting codes, sphere packings, packing
and covering in combinatorics and geometry
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Harmonic Analysis for Combinatorics and Theoretical
Computer Science - three directions (cont.)

Problems:

Are these three areas related?

Is Gowers’s ”quadratic (and higher) Fourier analysis” of some use
on the isoperimetric side? the error-correcting code side?

What can replace Parseval identity for quadratic Fourier analysis?

Find other applications of different nature of harmonic analysis to
Combinatorics and TCS?
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This lecture
This lecture is about the second direction: harmonic analysis
applied to discrete isoperimetry. We have several application and
potential applications in mind mainly to problems in probability. I
will start by mentioning one potential application. It deals with the
theory of random graphs initiated by Erdős and Rényi, and the

model G (n.p). In the picture we see a
random graph with n = 12 and p = 1/3.
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Threshold and Expectation threshold

Consider a random graph G in G (n, p) and the graph property: G
contains a copy of a specific graph H. (Note: H depends on n; a
motivating example: H is a Hamiltonian cycle.) Let q be the
minimal value for which the expected number of copies of H ′ in G
is at least 1/2 for every subgraph H ′ of H. Let p be the value for
which the probability that G contains a copy of H is 1/2.

Conjecture: [Kahn, K. 2006]

p/q = O(log n).

The conjecture can be vastly extended to general Boolean
functions, and we will hint on possible connection with harmonic
analysis and discrete isoperimetry. (Sneak preview: it will require a
far-reaching extension of results by Friedgut, Bourgain and
Hatami.)
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The discrete n-dimensional cube and Boolean functions

The discrete n-dimensional cube Ωn is the set of 0-1 vectors of
length n.

A Boolean function f is a map from Ωn to {0, 1}.

A boolean function f is monotone if f cannot decrease when you
switch a coordinate from 0 to 1.
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The Bernoulli measure

Let p, 0 < p < 1, be a real number. The probability measure µp is
the product probability distribution whose marginals are given by
µp(xk = 1) = p. Let f : Ωn → {0, 1} be a Boolean function.

µp(f ) =
∑
x∈Ωn

µp(x)f (x) = µp{x : f (x) = 1}.
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The total influence

Two vectors in Ωn are neighbors if they differ in one coordinate.

For x ∈ Ωn let h(x) be the number of neighbors y of x such that
f (y) 6= f (x).
The total influence of f is defined by

I p(f ) =
∑
x∈Ωn

µp(x)h(x).

If p = 1/2 we will omit p as a subscript or superscript.
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Russo’s lemma

Russo’s lemma: For a monotone Boolean function f ,

dµp(f )/dp = I p(f ).

Very useful in percolation theory and other areas.

The threshold interval for a monotone Boolean function f is
those values of p so that µp(f ) is bounded away from 0 and 1.
(Say 0.01 ≤ µp(f ) ≤ 0.99.)

A typical application of Russo’s lemma: If for every value p in the
threshold interval I p(f ) is large, then the threshold interval itself is
short. This is called a sharp threshold phenomenon.
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(A version of) Harper’s theorem

Harper’s theorem: If µp(f ) = t then

I p(f ) ≥ 2t · logp t.

There is a 3 line proof by induction.
Harmonic analysis proof: without the log(1/t) factor it follows
from Parseval.
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Influence of variables on Boolean functions

Let

σk(x1, . . . , xk−1, xk , xk+1, . . . , xn) = (x1, . . . , xk−1, 1−xk , xk+1, . . . , xn).

The influence of the kth variable on a Boolean function f is
defined by:

I p
k (f ) = µp(x ∈ Ωn, f (x) 6= f (σk(x))).
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KKL’s theorem

Theorem (Kahn, K, Linial, 1988; Bourgain Katznelson KKL 1992;
Talagrand 1994 Friedgut K. 1996) There exist a variable k such
that

Ik(f ) ≥ Cµ(f )(1− µ(f )) log n/n.

A sharp version (due to Talagrand)∑
I p
k (f )/ log(e + I p

k (f )) ≥ C (p)µp(f )(1− µp(f )).
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Hypercontructivity and Harper’s theorem:

We assume now p = 1/2. f =
∑

f̂ (S)WS is the Fourier-Walsh
expansion of f . Key ideas:

0 Parseval gives I (f ) = 4
∑

f̂ (S)|S |.
1 Bonami-Gross-Beckner hypercontractive inequality.

||
∑

f̂ (S)(1/2)|S | || 2 ≤ || f || 5/4.

2 For Boolean functions the qth power of the q norm is the
measure of the support and does not depend on q. If the
support is small this means that the q-norm is very different
from the r -norm if r 6= q.

(See also : Ledoux’ book on concentration of measure phenomena)
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Part II: Influence and symmetry
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Invariance under transitive group

Theorem: If a monotone Boolean function f with n variables is
invariant under a transitive group of permutation of the variables,
then

I p(f ) ≥ Cµp(f )(1− µp(f )) log n.

Proof: Follows from KKL’s theorem since all individual influences
are the same.
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Total influence under symmetry of primitive groups

For a transitive group of permutations Γ ⊂ Sn, let I (Γ) be the
minimum influence for a Γ-invariant function Boolean function
with n variables.
Theorem: [Bourgain and K. 1998] If Γ is primitive then one of the
following possibilities hold.

I

I (Γ) = θ(
√

n),

I

(logn)(k+1)/k−o(1) ≤ I (Γ) ≤ C (log n)(k+1)/k ,

I I (Γ) behaves like (log n)µ(n), where µ(n) ≤ log log n is
growing in an arbitrary way.
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Jumps in the behavior of I (Γ) for primitive groups Γ

If Γ is not An and Sn then I (Γ) ≤ (log n)2.

If I (Γ) ≤ (log n)1.99 then I (Γ) ≤ (log n)3/2

If I (Γ) ≤ (log n)3/2−ε then I (Γ) ≤ (log n)4/3

If I (Γ) ≤ (log n)4/3−ε then I (Γ) ≤ (log n)5/4

...

If I (Γ) ≤ (log n)1+o(1) then I (Γ) ≤ log n · log log n
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Threshold behavior for random graphs

The case that Γ is Sn acting on unordered pairs from
[n] = {1, 2, . . . , n} describes graph properties. The conclusion is
that the threshold interval for graph properties is at most

1/ log2−o(1) n.
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Hypercontractivity and the lower bounds

Both the upper bounds and the lower bounds depend on finding
invariants of the group which causes the threshold to go above
log n. Giving constructions for the upper bounds requires a detailed
understanding of primitive permutation groups based on the
classification theorem and O’Nan-Scott theorem.

The lower bounds are based on delicate and complicated harmonic
analysis.

Step I: hypercontractivity + random restriction argument + clever
inequalities takes you in the graph case from log n to log n3/2.

Step II: Extremely subtle ”bootstrap” to amplify the outcome.
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The Entropy Influence conjecture (Friedgut + K. 1996)

If the Fourier-Walsh expansion of f is f =
∑

f̂ (S)WS define

E (f ) =
∑

f̂ (S)f 2(S) log(1/f̂ 2(S)).

Conjecture: For some absolute constant C ,

I (f ) ≥ C · E (f ).
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Scaling-limit symmetry, critical exponents, spectral
distribution,...
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Prelude: A necessary and sufficient condition for sharp
threshold window.

The Shapley value of the kth variable is defined by

ψk(f ) =

∫ 1

0
I p
k (f )dp.

Theorem: (K. 2005)
A necessary and sufficient condition for diminishing threshold
window is that the maximum of the Shapley values tends to 0.

Problem: Close the exponential gap in this theorem.
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Part III: Stability of Harper’s theorem: from Harper to
Hatami and beyond
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Low Influence and Juntas

A dictatorship is a Boolean function depending on one variable. A
K -junta is a Boolean function depending on K variables.

Theorem: (Friedgut, follows easily from KKL) If p is bounded
away from 0 and 1 and I p(f ) < C then f is close to a K (C )-Junta.

This works if log p/ log n = o(1) the most interesting applications
would be when p is a power of n. There the theorem is not true.
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The works of Friedgut and Bourgain (1999)

Suppose that f is a Boolean function and

I p(f ) < pC ,

then
Friedgut’s theorem (1999): If f represent a monotone graph
property then f is close to a a “locally defined” function g .

Bourgain’s theorem (1999): Unconditionally, f has a substantial
“locally defined” ingredient.
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Hatami’s theorem: Pseudo-juntas

Suppose that for every subset of variables S , we have a function
JS : {0, 1}S− > {0, 1} which can be viewed as a constraint over
the variables with indices in S . Now there are two conditions:
A Boolean function is a K -psudo-junta if
(1) the expected number of variables in satisfied constraints is
bounded by a constant K .
(2) f (x) = f (y) if the variables in satisfied constraints and also
their values are the same for x and y .

Hatami’s theorem: For every C there is K (C ), such that if

I p(f ) < pC ,

then f is close to a K (C )-pseudo-junta.
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A conjectural extension of Hatami’s theorem

Conjecture: Suppose that µp(f ) = t and

I (f ) ≤ C log(1/t)t

then f is close to a O(log(1/t))-pseudo-junta.
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Stability versions of Harper’s theorems
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