Geometry of Poisson brackets and quantum unsharpness

Leonid Polterovich, Tel Aviv University

Jerusalem, December 13, 2012

Mathematical model of classical mechanics

($M^{2 n}, \omega$)-symplectic manifold
ω - symplectic form. Locally $\omega=\sum_{i=1}^{n} d p_{i} \wedge d q_{i}$.
M-phase space of mechanical system.
Energy determines evolution: $h: M \times[0,1] \rightarrow \mathbb{R}$ - Hamiltonian function (energy). Hamiltonian system:

$$
\left\{\begin{array}{l}
\dot{q}=\frac{\partial h}{\partial p} \\
\dot{p}=-\frac{\partial h}{\partial q}
\end{array}\right.
$$

Family of Hamiltonian diffeomorphisms

$$
\phi_{t}: M \rightarrow M, \quad(p(0), q(0)) \mapsto(p(t), q(t))
$$

Key feature: $\phi_{t}^{*} \omega=\omega$.

Symplectic preliminaries

Examples of closed symplectic manifolds:

- Surfaces with an area forms;
- Complex projective manifolds;
- Products.

Poisson bracket: For $f, g \in C^{\infty}(M)$

$$
\{f, g\}=\frac{\partial f}{\partial q} \cdot \frac{\partial g}{\partial p}-\frac{\partial f}{\partial p} \cdot \frac{\partial g}{\partial q}
$$

Measures non-commutativity of Hamiltonian flows of f and g.

Small scale on symplectic manifolds

$X \subset M$ displaceable if \exists Hamiltonian diffeomorphism ϕ :

$$
\phi X \cap X=\emptyset
$$

Figure: (Non)-displaceability on the 2-sphere

Non-displaceable fiber theorem

$$
\text { Let } \vec{f}=\left(f_{1}, \ldots, f_{N}\right): M \rightarrow \mathbb{R}^{N},\left\{f_{i}, f_{j}\right\}=0 \text { for all } i, j .
$$

Theorem (Entov-P., 2006)

For some $p \in \vec{f}(M) \subset \mathbb{R}^{N}$, the preimage $\vec{f}^{-1}(p)$ is non-displaceable.

Applications: symplectic topology, integrable systems.
"We will go another way"

Rigidity of partitions of unity

$\vec{f}=\left(f_{1}, \ldots, f_{N}\right)$ - collection of functions.
The magnitude of non-commutativity

$$
\nu_{c}(\vec{f})=\max _{x, y \in[-1,1]^{N}}\left\|\left\{\sum x_{j} f_{j}, \sum y_{k} f_{k}\right\}\right\| .
$$

$\|f\|:=\max |f|$-uniform norm.
The Poisson bracket invariant
$\mathcal{U}=\left\{U_{1}, \ldots, U_{N}\right\}-$ a finite open cover of M.
$p b(\mathcal{U})=\inf \nu_{c}(\vec{f})$
Infimum over all partitions of unity subordinated to \mathcal{U}.

Rigidity of partitions of unity

Theorem (Entov-P.-Zapolsky)

If all U_{i} are displaceable, $p b(\mathcal{U})>0$.
Quantitative version: $p b(\mathcal{U}) \cdot \mathcal{A} \geq C$,
\mathcal{A} - maximal "symplectic size" (e.g. displacement energy) of U_{i}
(the magnitude of localization)
C depends only on "combinatorics" of the cover \mathcal{U}.
Conjecture: C depends only on (M, ω) (universal const??)
INTERPRETATION AND PROOF
RELATED TO QUANTUM MECHANCS

Angular momentum

Phase space - two sphere, $L=\left(L_{1}, L_{2}, L_{3}\right) \in S^{2}$
Attribute of spinning body, depends on angular velocity and shape.

Figure: Conservation of angular momentum:

Poisson bracket relations: $\left\{L_{1}, L_{2}\right\}=L_{3}, \ldots$ (cyclic permutation)

Encountering quantum mechanics

Figure: Stern-Gerlach experiment (1922):

Deflection of a beam of atoms of silver through an inhomogeneous magnetic field. L_{3} takes two quantized values vs. classical prediction $L_{3} \in$ interval.

Naive quantization

H - finite dimensional Hilbert space over \mathbb{C}
$\mathcal{L}(H)$ - Hermitian operators on H
\mathcal{S} - density operators $\rho \in \mathcal{L}(H), \rho \geq 0$, $\operatorname{Trace}(\rho)=1$.
\hbar-Planck constant.
Quantum mechanics contains the classical one in the limit $\hbar \rightarrow 0$.

Table: Quantum-Classical Correspondence

CLASSICAL QUANTUM

	Symplectic $\operatorname{mfd}(M, \omega)$	C-Hilbert space H
OBSERVABLES	$f \in C^{\infty}(M)$	$A \in \mathcal{L}(H)$
STATES	Probability measures on M	Density ops $\rho \in \mathcal{S}$
BRACKET	Poisson bracket $\{f, g\}$	Commutator $\frac{i}{\hbar}[A, B]$

Mathematical model of quantum mechanics

von Neumann, 1932
$A \in \mathcal{L}(H)$ - observable, $A=\sum \lambda_{j} P_{j}$ - spectral decomposition. In state $\rho \in \mathcal{S}, A$ attains value λ_{j} with probability $\operatorname{Trace}\left(P_{j} \rho\right)$.
Example (quantized angular momentum) : $H=\mathbb{C}^{2}$,
$\widehat{L_{1}}, \widehat{L_{2}}, \widehat{L_{3}}$-Pauli matrices

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Commutator relations: $\left[\widehat{L_{1}}, \widehat{L_{2}}\right]=2 i \widehat{L_{3}}, \ldots$
Possible values: $+1 ;-1$ - explains appearance of only two dots in Stern-Gerlach experiment

A "paradox"

Figure: Back to Stern-Gerlach

Measure projections of the angular momentum L to vectors U, V, W with $U+V+W=0$. The sum of the results is 0 . But possible values are ± 1, contradiction! Deep foundational problem. An explanation: Gedankenexperiment is impossible: we cannot measure simultaneously non-commuting observables $\widehat{L_{U}}, \widehat{L_{V}}, \widehat{L_{W}}$. Uncertainty principle:
$\operatorname{Variance}(A, \rho) \times \operatorname{Variance}(B, \rho) \geq \frac{1}{4} \cdot|\operatorname{Trace}([A, B] \cdot \rho)|^{2}$.

Positive Operator Valued Measures (POVMs)

$\Omega_{N}=\{1, \ldots, N\}, H$-Hilbert space, $\mathcal{L}(H)$-Hermitian operators on H.
$\operatorname{POVM} A=\left\{A_{1}, \ldots, A_{N}\right\}, A_{j} \in \mathcal{L}(H), A_{j} \geq 0, \sum A_{j}=\mathbb{1}$.
Generalized observable with values in Ω_{N}.
Statistical axiom: Given the system in the state $\rho \in \mathcal{S}$, the probability of finding A in $j \in \Omega_{N}$ equals $\operatorname{Trace}\left(A_{j} \rho\right)$.
Example: $B \in \mathcal{L}(H)$ - von Neumann observable, $B=\sum_{j=1}^{N} \lambda_{j} P_{j}$ - spectral decomposition. Described as projector valued POVM $\left\{P_{1}, \ldots, P_{N}\right\}$ on $\Omega_{N}:=\{1, \ldots, N\}$ together with random variable $\lambda: \Omega_{N} \rightarrow \mathbb{R}$.
Agrees with von Neumann axiom: In state $\rho \in \mathcal{S}, B$ attains value λ_{j} with probability $\operatorname{Trace}\left(P_{j} \rho\right)$.

Quantum noise

$A=\left\{A_{1}, \ldots, A_{N}\right\}-\mathcal{L}(H)$-valued POVM on $\Omega_{N}=\{1, \ldots, N\}$
$x=\left(x_{1}, \ldots, x_{N}\right): \Omega_{N} \rightarrow \mathbb{R}$ - random variable $A(x)=\sum x_{j} A_{j}-$ operator-valued expectation
Systematic noise $\mathcal{N}(A)$ of A (Ozawa, Busch-Heinonen-Lahti)certain "magnitude" of the operator valued variance

$$
\sum_{j=1}^{N} x_{j}^{2} A_{j}-A(x)^{2}
$$

Magnitude of non-commutativity:
$\nu_{q}(A):=\max _{x, y \in[-1,1]^{N}}\|[A(x), A(y)]\|_{o p}$

Theorem (Unsharpness principle)

$\mathcal{N}(A) \geq \frac{1}{2} \nu_{q}(A)$.
Janssens, 2006; Miyadera-Imai, 2008; P., 2012

Berezin-Toeplitz quantization

(M, ω)-closed symplectic manifold, $[\omega] \in H^{2}(M, \mathbb{Z})$.
BT-quantization: Sequence of \mathbb{C}-Hilbert spaces $H_{m}, \operatorname{dim} H_{m} \rightarrow \infty$ and linear maps $T_{m}: C^{\infty}(M) \rightarrow \mathcal{L}\left(H_{m}\right), f \mapsto T_{m}(f)$:

- (normalization) $T_{m}(1)=\mathbb{1}$;
- (positivity) $f \geq 0 \Rightarrow T_{m}(f) \geq 0$.
- (correspondence principle)

$$
\left\|\left[T_{m}(f), T_{m}(g)\right]\right\|_{o p}=\frac{\|\{f, g\}\|}{m}+O\left(1 / m^{2}\right)
$$

$\hbar=\frac{1}{m}-$ Planck constant, $m \rightarrow \infty$ - classical limit.
Berezin, 1975; ... Bordeman-Meinrenken-Schlichenmaier, 1994; Guillemin, 1995; Borthwick-Uribe, 1996; Ma-Marinescu, 2008

Classical registration procedure

Figure: Registration:

(M, ω) closed symplectic manifold, $\mathcal{U}=\left\{U_{1}, \ldots, U_{N}\right\}$-finite open cover, $\vec{f}=\left\{f_{1}, \ldots, f_{N}\right\}$-subordinated partition of unity:
$\operatorname{support}\left(f_{j}\right) \subset U_{j}, f_{j} \geq 0, \sum f_{j}=1$.
Each point $z \in M$ has to register in exactly one $U_{j} \ni z$.
Ambiguity because of overlaps.

Figure: Cell phone registers at an access point :

Classical registration procedure

Figure: Registration:

(M, ω) closed symplectic manifold, $\mathcal{U}=\left\{U_{1}, \ldots, U_{N}\right\}$-finite open cover, $\vec{f}=\left\{f_{1}, \ldots, f_{N}\right\}$-subordinated partition of unity:
$\operatorname{support}\left(f_{j}\right) \subset U_{j}, f_{j} \geq 0, \sum f_{j}=1$.
Each point $z \in M$ has to register in exactly one $U_{j} \ni z$.
Ambiguity because of overlaps. Resolve at random:
z registers in U_{j} with probability $f_{j}(z)$.
"truth, but not the whole truth"

Quantum registration procedure

Observation: $T_{m}-\mathrm{BT}$-quantization \Rightarrow
$A^{(m)}:=\left\{T_{m}\left(f_{j}\right)\right\}-\mathcal{L}\left(H_{m}\right)$-valued POVM on $\Omega_{N}=\{1, \ldots, N\}$.
Interpretation: Given the system in state $\rho \in \mathcal{S}\left(H_{m}\right)$, probability of registration in U_{j} equals $\operatorname{Trace}\left(T_{m}\left(f_{j}\right) \cdot \rho\right)$.

Theorem

Assume that all U_{i} 's are displaceable. Then

$$
\mathcal{N}\left(A^{(m)}\right) \geq C(U) \cdot \hbar
$$

for all sufficiently small $\hbar=1 / \mathrm{m}$.

Quantum registration procedure

Ingredients of the proof:

- rigidity of partitions of unity (function theory on symplectic manifolds);
- norm-sensitive correspondence principle (pseudo-differential calculus);
- unsharpness principle for POVMs (linear algebra).

Upgrades under extra assumptions to

Noise-Localization Uncertainty Relation

$$
\text { Noise } \times \max _{i} \operatorname{Size}\left(U_{i}\right) \geq C \hbar .
$$

EXTRA: Smearing

Figure: Smearing of POVMs:

$$
0<{\underset{i}{i}}_{0}^{0} \overbrace{i}^{j} \Omega_{L}
$$

Each state $i \in \Omega_{L}$ diffuses to $j \in \Omega_{N}$ with probability $\gamma_{i j}$. Statistical procedure given by POVM B on Ω_{L} transforms to the one given by POVM A on Ω_{N} with $A_{j}=\sum_{i} \gamma_{i j} B_{i}$.
$\Gamma=\left(\gamma_{i j}\right): \mathbb{R}^{N} \rightarrow \mathbb{R}^{L}$ - Markov operator. $B \mapsto_{\Gamma} A$
Role of smearing: Two pairwise non-commuting projector valued measures cannot be measured simultaneously. But they can be measured after a smearing-"unsharp approximate measurements".

EXTRA: Noise operator

$A=\left\{A_{1}, \ldots, A_{N}\right\}-\mathcal{L}(H)$-valued POVM on $\Omega_{N}=\{1, \ldots, N\}$
$x=\left(x_{1}, \ldots, x_{N}\right): \Omega_{N} \rightarrow[-1,1]^{N}$ - random variable
$A(x)=\sum x_{j} A_{j}$ - operator-valued expectation
$\Delta_{A}(x):=\sum_{j=1}^{N} x_{j}^{2} A_{j}-A(x)^{2}$ - operator valued variance or (noise operator) (Ozawa, Busch-Heinonen-Lahti, 2004)
Difference of variances for POVM- and von Neumann observables
$\operatorname{Trace}\left(\Delta_{A}(x) \cdot \rho\right)=\operatorname{Var}(A, \rho)-\operatorname{Var}(A(x), \rho), \forall \rho \in \mathcal{S}$.

EXTRA: Noise and smearing

Let $B \mapsto_{\Gamma} A(B$-smearing of A with Markov operator Γ)
Expectations coincide: $\operatorname{Exp}(B, \Gamma x)=\operatorname{Exp}(A, x) \forall x \in \mathbb{R}^{N}$
But noise decreases: $\Delta_{B}(\Gamma x) \leq \Delta_{A}(x)$ (Martens-de Muynck)
Can it decrease to zero??
Inherent noise of $A: \mathcal{N}(A):=\inf _{B, \Gamma} \max _{x \in[-1,1]^{N}}\left\|\Delta_{B}(\Gamma x)\right\|_{o p}$
Measures "the noise component" persisting under unsmearings

Back to von Neumann axioms (1932)

Quantum state: $\rho: \mathcal{L}(H) \rightarrow \mathbb{R}$,

- (normalization) $\rho(\mathbb{1})=1$;
- (positivity) $A \geq 0 \Rightarrow \rho(A) \geq 0$;
- (linearity) ρ - linear.

Corollary: $\rho(A):=\operatorname{Trace}(A \rho)$, where $\rho \in \mathcal{S}$-density operator.
Corollary: No dispersion free states ("no hidden variables") $\forall \rho \exists A$: $\operatorname{Variance}(A, \rho)>0$

Criticism: (Grete Hermann, 1936; Bohm, Bell 1950ies-1960ies): $\rho(A+B)=\rho(A)+\rho(B)$ makes no sense if A, B are not simultaneously measurable, i.e. $[A, B] \neq 0$.

Quasi-states

Normalized, positive, quasi-linear functionals $\zeta: \mathcal{L}(H) \rightarrow \mathbb{R}$:
$\zeta(u A+v B)=u \zeta(A)+v \zeta(B) \forall A, B \in \mathcal{L}(H):[A, B]=0, \forall u, v \in \mathbb{R}$.

Theorem (Gleason, 1957)

$\operatorname{dim} H \geq 3 \Rightarrow$ every quasi-state is linear, i.e. a state.
Apply correspondence principle to define classical analogue of quasi-states: (M, ω) - closed symplectic manifold, $\zeta: C(M) \rightarrow \mathbb{R}$-a functional:

- (normalization) $\zeta(1)=1$;
- (positivity) $f \geq 0 \Rightarrow \zeta(f) \geq 0$;
- (quasi-linearity) $\zeta(u f+v g)=u \zeta(f)+v \zeta(g) \forall f, g \in C(M)$ such that $\{f, g\}=0$.

Anti-Gleason phenomenon in classical mechanics

Existence of non-linear symplectic quasi-states, 2006-2011 $\operatorname{dim} M=2$ Aarnes theory of topological quasi-states (1991)
$\operatorname{dim} M \geq 4$ Floer theory-Morse theory for the action functional
$\int p d q-h d t$ on loop space of M.
(complex projective space, toric manifolds, blow ups...)
Entov-P., Ostrover, McDuff, Usher, Fukaya-Oh-Ohta-Ono Extra feature:

Vanishing: $\zeta(f)=0$ if support (f) displaceable.
Rigidity of partitions of unity: $\sum f_{i}=1$, $\operatorname{support}\left(f_{i}\right)$ displaceable. By vanishing, $\zeta\left(f_{i}\right)=0$. If $\left\{f_{i}, f_{j}\right\}=0$,
$1=\zeta(1)=\zeta\left(\sum f_{i}\right)=\sum \zeta\left(f_{i}\right)=0$, contradiction.

Conclusion

Figure: ROAD MAP (physical perspective)
FOUNDATIONS OF QUANTUM MECHANICS (GLEASON THM) "IMPOSSIBILITY TO ASSIGN CONSISTENTLY VALUES TO OBSERVABLES"

FLOER-HOMOLOGICAL SYMPLECTIC QUASI-STATES
"VIOLATION" OF CORRESPONDENCE PRINCIPLE

NOISE-LOCALIZATION UNCERTAINTY

THANK YOU!

