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Mathematical model of classical mechanics

(M2n, ω)–symplectic manifold
ω– symplectic form. Locally ω =

∑n
i=1 dpi ∧ dqi .

M-phase space of mechanical system.

Energy determines evolution: h : M × [0, 1]→ R – Hamiltonian
function (energy). Hamiltonian system:{

q̇ = ∂h
∂p

ṗ = −∂h
∂q

Family of Hamiltonian diffeomorphisms

φt : M → M, (p(0), q(0)) 7→ (p(t), q(t))

Key feature: φ∗tω = ω.
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Symplectic preliminaries

Examples of closed symplectic manifolds:

Surfaces with an area forms;

Complex projective manifolds;

Products.

Poisson bracket: For f , g ∈ C∞(M)

{f , g} =
∂f

∂q
· ∂g

∂p
− ∂f

∂p
· ∂g

∂q

Measures non-commutativity of Hamiltonian flows of f and g .
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Small scale on symplectic manifolds

X ⊂ M displaceable if ∃ Hamiltonian diffeomorphism φ:

φX ∩ X = ∅ .

Figure: (Non)-displaceability on the 2-sphere
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Non-displaceable fiber theorem

Let ~f = (f1, ..., fN) : M → RN , {fi , fj} = 0 for all i , j .

Theorem (Entov-P., 2006)

For some p ∈ ~f (M) ⊂ RN , the preimage ~f −1(p) is
non-displaceable.

Applications: symplectic topology, integrable systems.
”We will go another way”
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Rigidity of partitions of unity

~f = (f1, ..., fN)– collection of functions.
The magnitude of non-commutativity

νc(~f ) = max
x ,y∈[−1,1]N

||{
∑

xj fj ,
∑

yk fk}|| .

||f || := max |f |–uniform norm.

The Poisson bracket invariant
U = {U1, ...,UN} – a finite open cover of M.
pb(U) = inf νc(~f )
Infimum over all partitions of unity subordinated to U .
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Rigidity of partitions of unity

Theorem (Entov-P.-Zapolsky)

If all Ui are displaceable, pb(U) > 0.

Quantitative version: pb(U) · A ≥ C ,
A – maximal “symplectic size” (e.g. displacement energy) of Ui

(the magnitude of localization)
C depends only on “combinatorics” of the cover U .
Conjecture: C depends only on (M, ω) (universal const??)

INTERPRETATION AND PROOF

RELATED TO QUANTUM MECHANCS
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Angular momentum

Phase space – two sphere, L = (L1, L2, L3) ∈ S2

Attribute of spinning body, depends on angular velocity and shape.

Figure: Conservation of angular momentum:

Poisson bracket relations: {L1, L2} = L3, ... (cyclic permutation)
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Encountering quantum mechanics

Figure: Stern-Gerlach experiment (1922):

Deflection of a beam of atoms of silver through an inhomogeneous
magnetic field. L3 takes two quantized values vs. classical
prediction L3 ∈ interval.
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Naive quantization

H - finite dimensional Hilbert space over C
L(H) - Hermitian operators on H
S- density operators ρ ∈ L(H), ρ ≥ 0, Trace(ρ) = 1.
~-Planck constant.
Quantum mechanics contains the classical one in the limit ~→ 0.

Table: Quantum-Classical Correspondence

CLASSICAL QUANTUM

Symplectic mfd (M, ω) C-Hilbert space H
OBSERVABLES f ∈ C∞(M) A ∈ L(H)

STATES Probability measures on M Density ops ρ ∈ S
BRACKET Poisson bracket {f , g} Commutator i

~ [A,B]
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Mathematical model of quantum mechanics

von Neumann, 1932
A ∈ L(H) - observable, A =

∑
λjPj - spectral decomposition.

In state ρ ∈ S, A attains value λj with probability Trace(Pjρ).

Example (quantized angular momentum) : H = C2,
L̂1, L̂2, L̂3-Pauli matrices(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
.

Commutator relations: [L̂1, L̂2] = 2i L̂3, ...

Possible values: +1;−1 – explains appearance of only two dots in
Stern-Gerlach experiment

Leonid Polterovich, Tel Aviv University Geometry of Poisson brackets and quantum unsharpness



A “paradox”

Figure: Back to Stern-Gerlach

Measure projections of the angular momentum L to vectors
U,V ,W with U + V + W = 0. The sum of the results is 0. But
possible values are ±1, contradiction! Deep foundational problem.
An explanation: Gedankenexperiment is impossible: we cannot
measure simultaneously non-commuting observables L̂U , L̂V , L̂W .
Uncertainty principle:
Variance(A, ρ)× Variance(B, ρ) ≥ 1

4 · |Trace([A,B] · ρ)|2.
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Positive Operator Valued Measures (POVMs)

ΩN = {1, ...,N}, H-Hilbert space, L(H)-Hermitian operators on H.
POVM A = {A1, ...,AN}, Aj ∈ L(H), Aj ≥ 0,

∑
Aj = 1l.

Generalized observable with values in ΩN .

Statistical axiom: Given the system in the state ρ ∈ S, the
probability of finding A in j ∈ ΩN equals Trace(Ajρ).

Example: B ∈ L(H) – von Neumann observable, B =
∑N

j=1 λjPj

– spectral decomposition. Described as projector valued POVM
{P1, ...,PN} on ΩN := {1, ...,N} together with
random variable λ : ΩN → R.
Agrees with von Neumann axiom: In state ρ ∈ S, B attains value
λj with probability Trace(Pjρ).
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Quantum noise

A = {A1, ...,AN} – L(H)-valued POVM on ΩN = {1, ...,N}
x = (x1, ..., xN) : ΩN → R - random variable
A(x) =

∑
xjAj – operator-valued expectation

Systematic noise N (A) of A (Ozawa, Busch-Heinonen-Lahti)–
certain “magnitude” of the operator valued variance

N∑
j=1

x2
j Aj − A(x)2

Magnitude of non-commutativity:
νq(A) := maxx ,y∈[−1,1]N ||[A(x),A(y)]||op

Theorem (Unsharpness principle)

N (A) ≥ 1
2νq(A).

Janssens, 2006; Miyadera-Imai, 2008; P., 2012
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Berezin-Toeplitz quantization

(M, ω)-closed symplectic manifold, [ω] ∈ H2(M,Z).
BT-quantization: Sequence of C-Hilbert spaces Hm, dim Hm →∞
and linear maps Tm : C∞(M)→ L(Hm), f 7→ Tm(f ):

(normalization) Tm(1) = 1l;

(positivity) f ≥ 0⇒ Tm(f ) ≥ 0.

(correspondence principle)

||[Tm(f ),Tm(g)] ||op =
||{f , g}||

m
+ O(1/m2) .

~ = 1
m–Planck constant, m→∞– classical limit.

Berezin, 1975; ... Bordeman-Meinrenken-Schlichenmaier, 1994;
Guillemin, 1995; Borthwick-Uribe, 1996; Ma-Marinescu, 2008
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Classical registration procedure

Figure: Registration:

(M, ω) closed symplectic manifold, U = {U1, ...,UN}-finite open
cover, ~f = {f1, ..., fN}-subordinated partition of unity:
support(fj) ⊂ Uj , fj ≥ 0,

∑
fj = 1.

Each point z ∈ M has to register in exactly one Uj 3 z.

Ambiguity because of overlaps.
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Figure: Cell phone registers at an access point :
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Classical registration procedure

Figure: Registration:

(M, ω) closed symplectic manifold, U = {U1, ...,UN}-finite open
cover, ~f = {f1, ..., fN}-subordinated partition of unity:
support(fj) ⊂ Uj , fj ≥ 0,

∑
fj = 1.

Each point z ∈ M has to register in exactly one Uj 3 z.

Ambiguity because of overlaps. Resolve at random:
z registers in Uj with probability fj(z).
“truth, but not the whole truth”
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Quantum registration procedure

Observation: Tm – BT-quantization ⇒
A(m) := {Tm(fj)} – L(Hm)-valued POVM on ΩN = {1, ...,N}.

Interpretation: Given the system in state ρ ∈ S(Hm), probability
of registration in Uj equals Trace(Tm(fj) · ρ).

Theorem

Assume that all Ui ’s are displaceable. Then

N (A(m)) ≥ C (U) · ~

for all sufficiently small ~ = 1/m.
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Quantum registration procedure

Ingredients of the proof:

rigidity of partitions of unity (function theory on symplectic
manifolds);

norm-sensitive correspondence principle (pseudo-differential
calculus);

unsharpness principle for POVMs (linear algebra).

Upgrades under extra assumptions to

Noise-Localization Uncertainty Relation

Noise×max
i

Size(Ui ) ≥ C~ .
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EXTRA: Smearing

Figure: Smearing of POVMs:

Each state i ∈ ΩL diffuses to j ∈ ΩN with probability γij .
Statistical procedure given by POVM B on ΩL transforms to the
one given by POVM A on ΩN with Aj =

∑
i γijBi .

Γ = (γij) : RN → RL – Markov operator. B 7→Γ A

Role of smearing: Two pairwise non-commuting projector valued
measures cannot be measured simultaneously. But they can be
measured after a smearing–“unsharp approximate
measurements”.
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EXTRA: Noise operator

A = {A1, ...,AN} – L(H)-valued POVM on ΩN = {1, ...,N}

x = (x1, ..., xN) : ΩN → [−1, 1]N - random variable

A(x) =
∑

xjAj – operator-valued expectation

∆A(x) :=
∑N

j=1 x2
j Aj − A(x)2 – operator valued variance or

(noise operator) (Ozawa, Busch-Heinonen-Lahti, 2004)

Difference of variances for POVM- and von Neumann observables
Trace(∆A(x) · ρ) = Var(A, ρ)− Var(A(x), ρ), ∀ρ ∈ S.
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EXTRA: Noise and smearing

Let B 7→Γ A (B-smearing of A with Markov operator Γ)

Expectations coincide: Exp(B, Γx) = Exp(A, x) ∀x ∈ RN

But noise decreases: ∆B(Γx) ≤ ∆A(x) (Martens-de Muynck)

Can it decrease to zero??

Inherent noise of A: N (A) := infB,Γ maxx∈[−1,1]N ||∆B(Γx)||op

Measures “the noise component” persisting under unsmearings
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Back to von Neumann axioms (1932)

Quantum state: ρ : L(H)→ R,

(normalization) ρ(1l) = 1;

(positivity) A ≥ 0⇒ ρ(A) ≥ 0;

(linearity) ρ – linear.

Corollary: ρ(A) := Trace(Aρ), where ρ ∈ S-density operator.

Corollary: No dispersion free states ( ”no hidden variables” )
∀ρ ∃A : Variance(A, ρ) > 0

Criticism: (Grete Hermann, 1936; Bohm, Bell 1950ies-1960ies):
ρ(A + B) = ρ(A) + ρ(B) makes no sense if A,B are not
simultaneously measurable, i.e. [A,B] 6= 0.
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Quasi-states

Normalized, positive, quasi-linear functionals ζ : L(H)→ R:

ζ(uA+vB) = uζ(A)+vζ(B) ∀A,B ∈ L(H) : [A,B] = 0, ∀u, v ∈ R .

Theorem (Gleason, 1957)

dim H ≥ 3⇒ every quasi-state is linear, i.e. a state.

Apply correspondence principle to define classical analogue of
quasi-states: (M, ω)- closed symplectic manifold, ζ : C (M)→ R-a
functional:

(normalization) ζ(1) = 1;

(positivity) f ≥ 0⇒ ζ(f ) ≥ 0;

(quasi-linearity) ζ(uf + vg) = uζ(f ) + vζ(g)∀f , g ∈ C (M)
such that {f , g} = 0.
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Anti-Gleason phenomenon in classical mechanics

Existence of non-linear symplectic quasi-states, 2006-2011
dim M = 2 Aarnes theory of topological quasi-states (1991)

dim M ≥ 4 Floer theory–Morse theory for the action functional∫
pdq − hdt on loop space of M.

(complex projective space, toric manifolds, blow ups...)
Entov-P., Ostrover, McDuff, Usher, Fukaya-Oh-Ohta-Ono
Extra feature:

Vanishing: ζ(f ) = 0 if support(f ) displaceable.

Rigidity of partitions of unity:
∑

fi = 1, support(fi )
displaceable. By vanishing, ζ(fi ) = 0. If {fi , fj} = 0,

1 = ζ(1) = ζ(
∑

fi ) =
∑
ζ(fi ) = 0, contradiction.
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Conclusion

Figure: ROAD MAP (physical perspective)
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The End
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