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REFLECTIONS ON THE DEVELOPMENT OF
MATHEMATICS IN THE 20TH CENTURY

D. KAZHDAN

Let us compare mathematics as it was at the beginning of the century
with contemporary mathematics. What has happened in the past hundred
years?

To be sure, we have numerous new results and any attempt to list the
most important results is bound to be incomplete. So let us ask our question
differently: What are the basic changes in mathematical intuition or what
questions are natural for us but could not be imagined at the beginning of
the century?

There are some areas which have seen immense progress but where we
do not find much change in mathematical intuition. For example I think
that the sentence of Poincaré written at the turn of the century, “Anal-
ysis profits by geometric considerations, as it profits by the problems it
is obliged to solve in order to satisfy the requirements of physics”, ade-
quately describes our contemporary understanding of analysis. Therefore I
will not talk about the development of Analysis in this century. Rather, I
will choose topics which in my opinion represent the basic shifts in math-
ematical perspective. Of course I can only present my personal views and
different mathematicians will see the mathematical landscape in a com-
pletely different light.

Also, I prefer not to start from a discussion of particular mathematical
achievements. Instead let us begin by considering the old question: “How is
mathematics possible?” One of the possible interpretations of this question
is, “How are we mathematicians able to perform our work?”

One of the main themes of 19th century mathematics was to “make
mathematics rigorous.” At the beginning of this century, therefore, the
question, “How is mathematics possible?”, might have been interpreted as
the twofold directive:

1. set up a formalism adequate for mathematical reasoning and prove
that such a formalism does not lead to contradictions, and
2. show that any question can be resolved.
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The development of mathematics in the 20th century banished any hope
for such a “naive” understanding. Godel has shown that we can never be
sure that our framework, our chosen system of axioms does not lead to
contradictions. Moreover we now know that any [sufficiently rich] system
of axioms is incomplete. In other words if we are working in a framework
of a sufficiently rich system of axioms then either our system leads to a
contradiction or we meet statements about which we will never have any-
thing to say. That is, we will neither be able to prove these statements,
nor to disprove them, nor to show that we cannot either prove or disprove
them. At first glance Godel seems to have signed the death sentence for
mathematics. One would expect the unsolvable questions to jump at us
in large numbers. If that were really the case, we would never be sure
whether it makes sense to try seriously to solve difficult problems; surely,
then, mathematics would come to a halt.

Fortunately, reality is very different. Aside from some very specific
areas, we seem rarely to run into questions which we cannot settle and
even in these areas we are sometimes able to prove that the questions
we can’t answer are “independent”; that is, we know that we can neither
prove nor disprove these statements. In view of this, we now give the old
question, “How is mathematics possible?”, a new interpretation: What is
the mechanism which so often leads us to ask “meaningful” questions, i.e.,
questions which can be resolved?

I do not think that anyone has even an inkling of where to look for an
answer to this. But I think that our ability to avoid the prognostication
that might be suggested by Godel’s theorem is related to the well-known
but surprising observation that it is easier to solve a more general problem
than a specific one. You see, there is a big difference between generalizations
in mathematics and generalizations in social studies. In the case of social
studies we pay for any generalization by being forced to accept an increasing
number of counterexamples. In contrast, in mathematics where exceptions
are not allowed, the existence of a sufficiently general statement to which
we cannot find counterexamples is a strong indication that the statement
is provable. [For example many people thought that the Fermat conjecture
could neither be proved nor disproved nor shown to be undecidable. But
immediately after Frey realized that the Fermat conjecture follows from
the much more general Taniyama—Weil conjecture it became “clear” that
Fermat’s conjecture would be solved.]

We can also ask: “How is mathematics possible?” or, “Why doesn’t
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mathematics split into a number of unrelated disciplines?” When one reads
writings from the turn of the century one sees that the explosion of math-
ematics was seen to be the main problem which could destroy the unity of
mathematics. Even then there was no mathematician who could follow all
the developments; mathematics threatened to become a bunch of unrelated
disciplines. Poincaré writes: “An attempt is made to cut it in pieces — to
specialize. Too great a movement in this direction constitutes a serious
obstacle to the progress of science.” How could unity be preserved?

A choice of an answer to this question depends greatly on the answer
to the first question: “How is mathematics possible?”

A “formal” interpretation of the first question” represents a very specific
understanding of the structure of mathematics whereby logical structure
takes on primary importance. This interpretation suggests Hilbert’s one
explanation for the unity — the main uniting force comes from the common
structure: the logic of proofs.

On the other hand, Poincaré, for whom mathematics is characterized
by the “economy of thought”, writes that the unity of mathematics will be
preserved by unexpected concurrencies as mathematics progresses.

We see now that both Hilbert and Poincaré are right — mathematics was
able to preserve the unity during the multifaceted development of the 20th
century and this unity is due both to the structural clarity and the immense
number of unexpected connections between different areas of mathematics.

Actually the question, “How is mathematics possible?”, was already
asked by Kant who understood it as the question, “How is mathematics
possible?” Kant saw the existence of mathematics as a proof for the ex-
istence of pure intuition. Mathematics for Kant was Euclidean. Such an
understanding of mathematics does not correspond to everyday experience
which teaches that some statements which are “intuitively clear” to one
mathematician could be “counter-intuitive” to another. As Poincaré de-
scribed beautifully in his article “Mathematical Discovery”, an unexpected
immediate illumination sometimes comes after a long and often seemingly
unproductive period.

In other words mathematical intuition is not a natural phenomenon,
is not given at birth, but develops throughout one’s lifetime. I prefer to
discuss the change in intuition of the mathematical community rather than
follow the development of intuition of a particular mathematician [the topic
of the article “Mathematical Discovery].

I think that the most drastic change in mathematical intuition came
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from the development of algebra. At the end of the previous century it
was possible to subdivide mathematics into Algebra and Analysis, which
contained Geometry, and these two areas were almost independent. At the
end of this century we find ourselves in the position where the majority
of achievements in Analysis and Geometry are, at least partially, based
on the development of algebraic intuition. It is very characteristic that
such a brilliant mathematician as Pontriagin dropped mathematics after
the appearance of the post-war French school which was based on new
algebraic intuition. This new understanding that the analysis of different
algebraic structures is central for the development of mathematics found the
most striking expression in the development of the category theory. I do not
think that it would be possible to explain the basics of the category theory
to any mathematician of the last century. The reason is that the theory of
categories is “too simple”. This theory, which originated in the forties, is
based on a drastic shift of perspective: instead of studying the logic of the
properties of mathematical objects the category theory studies the logic
of relations. The category theory is perhaps the first serious extension of
Aristotelian logic. In Aristotelian logic all the statements are “absolutely
trivial” but in spite of this triviality Aristotelian logic is the backbone of
all sciences. Analogously all the basic statements of the category theory
are absolutely trivial but this logic of relations is the basis for a big chunk
of modern mathematics. It is very significant that the first paper on the
category theory was rejected by a first-rate mathematical journal for lack
of content.

How does this new way of thinking change mathematical reality? It is
impossible to describe the full picture while standing on one foot but I can
give two applications of this new way of thinking. The first application is
the possibility of constructing “ideal” objects which are completely defined
in terms of their relations with the previously known objects. The second
advantage coming from the category theory is the possibility of seeing fa-
miliar mathematical objects as “materializations” or, if you wish, shades of
the more elaborate and structured objects. For example, much of the re-
cent progress in representation theory is based on the understanding that,
in a number of cases, functions are “materializations” of more claborate
algebraic-geometric objects.

The third topic I want to discuss is the change in structure of the inter-
relation between mathematics and physics. There were two different stages
to this change.
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In the first stage which started already at the beginning of this century,
physicists realized that they needed mathematics not only as a tool to solve
their problems, but also as a language to formulate laws of physics. Both the
relativity theory and quantum mechanics rely on “modern” mathematics
for the formulation of “physical” reality. There is no way to explain some
of the most basic problems of contemporary physics to people who do not
have an extensive mathematical background. But in this first stage, we still
find a familiar structure to the relation between mathematics and physics
when mathematics is used by physicists as a tool for the formulation and
solution of their problems. The second stage, which started 20 years ago,
brought a reversal of roles. In the last two decades of this century, we
have had an increasing number of examples of applications of physics to
mathematics. These applications are primarily in the form of conjectures
which relate mathematical problems that were viewed by mathematicians
as having nothing in common. How is this possible? In many physical
theories there is a way to express physical quantities in terms of a functional
integral. Since the functional integral does not have a rigorous definition
such expressions do not have any meaning for mathematicians. Imagine
now that the problem we consider depends on a parameter [say energy]
and in the case when the energy is either very high or very low, there is a
way to approximate the corresponding functional integrals by conventional
mathematical expressions. These conventional expressions for the case of
low and high energy are very different and we obtain two different rigorous
expressions for the physical quantities — one from the analysis of the case
when the energy is high and the other when it is low. From the point of view
of physics both expressions are specializations of the original functional
integral. Therefore “physical intuition” implies that these two different
expressions coincide. On the other hand there is no obvious mathematical
explanation for such a coincidence.

The existence of mathematical consequences of physical theories leads
to the situation where mathematics plays a role of experimental physics for
some branches of theoretical physics. It has become either impossible or
too expensive to check the validity of some physical theories by experiment.
Instead the validity of a physical theory is “confirmed” by the correctness
of the mathematical predictions which can be deduced from this theory.

The last topic I want to discuss is the appearance of computer science.
As a result of this development, mathematicians realized that it is not suf-
ficient to ask whether a particular problem is solvable, but one should also
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inquire whether it can be solved in a reasonable amount of time. Computer
scientists defined “reasonable” questions as such questions where you can
check the correctness of an answer in a short [=polynomial] time. On the
other hand one can consider a more restricted group of questions which can
be solved in a short time. The basic problem of computer science is whether
these two groups are really different, whether P#£NP. At first glance it is
“clear” that P#£NP, that there are many ways to ask “reasonable” questions
which are difficult to solve. But as we have already discussed, mathemati-
cal problems have a strong tendency to be solved in a relatively short time.
Really, if a solution to a particular mathematical problem would take an
exponentially long time we would never be able to solve such a problem.
So cither P=NP or we, mathematicians, are somehow able to choose very
special “solvable” questions. Therefore we can restate the question, “Why
are we mathematicians able to perform our work?”, in a stronger form. We
can ask: “What is the mechanism which leads us to ask questions which
can be solved and can be solved in real time?”
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