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Abstract

We describe two directions of study following early work of Lucio Russo. The first

direction follows the famous Russo-Seymour-Welsh (RSW) theorem. We describe a

RSW-type conjecture by the first author which, if true, would imply a coarse version of

conformal invariance for critical planar percolation. The second direction is the study

of ”Russo’s lemma” and ”Russo’s 0-1 law” for threshold behavior of Boolean function.

We mention results by Friedgut, Bourgain, and Hatami, and present a conjecture by Jeff

Kahn and the second author which may allow applications for finding critical probabil-

ities.

1 Introduction

We did not meet Lucio Russo in person but his mathematical work greatly influenced our own

and his wide horizons and interests in physics, mathematics, philosophy, and history greatly

inspired us. We describe here two directions of study following early work of Russo. The first

section follow the famous Russo-Seymour-Welsh theorem regarding critical planar percolation.

The second section follows the basic ”Russo’s lemma” and deep ”Russo’s 0-1 law”. In each

direction we present one central conjecture.

2 Planar percolation

Consider 1/2-Bernoulli percolation on a planar grid. Russo [24] and Seymour and Welsh [26]

proved the RSW theorem comparing the probability of having an open crossing in a n × cn
rectangle to that of crossing a square. In particular implying that:

the probability critical Bernoulli percolation crosses a long rectangle is bounded away from

zero and is depending only on the aspect ratio.
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This fundamental fact is used and extended to a variety of models, involving rather clever

proofs. But for now all proofs are using rotation symmetry. Vincent Tassion recently gave a

couple of proofs for the RSW fact under various sets of weaker assumptions, key to solving

several known problems [30]. Personally let us note that the RSW lemma was essential in

controlling the influence of a fixed edge on the crossing event, allowing us to establish, jointly

with Oded Schramm, noise sensitivity of critical percolation, see [2, 15].

What about a RSW type result for a more general planar graphs going beyond Euclidean

lattices and tessellations?

In what follows we would like to suggest a conjectural extension of RSW theorem to general

planar triangulations. The motivation comes from conformal uniformization, see [1].

2.1 A generalized RSW conjecture.

Tile the unit square with (possibly infinity number) of squares of varying sizes so that at most

three squares meet at corners. That is, the dual graph is a triangulation. Color each square

black or white with equal probability independently.

Conjecture 2.1. There is a universal c > 0, so that the probability of a black left right

crossing is bigger than c.

At the moment we do not have a proof of the conjecture even when the squares are colored

black with probability 2/3. Behind the conjecture is a coarse version of conformal invariance.

That is, the crossing probability is balanced if the tiles are of uniformly bounded distance to

circles (rotation invariance), and the squares can be of different sizes, (dilation invariance).

If true the same should hold for a tiling or a packing of a triangulation, with a set of shapes

that are of bounded Hausdorff distance to circles.

If the answer to conjecture 2.1 is affirmative, this will imply the following: Let G be the

1-skeleton of a bounded degree triangulation of an open disk. Assume G is transient for the

simple random walk, then 1/2-Bernoulli site percolation on G admits infinitely many infinite

cluster a.s. We do not know it even for any p-Bernoulli percolation with 1 > p > 1/2. By

[3] such triangulations result in a square tilings as in the conjecture. the proof in [3] is an

analogous of the RSW phenomena for simple random walk on the triangulation. We speculate

1/2-Bernoulli site percolation on G admits infinitely many infinite cluster a.s. iff G is transient.

How does the influence of a square in the tiling on the crossing probability at p = 1/2

and its area related? Establishing a high dimensional version of the RSW lemma is a well
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known very important open problem. Either at p = 1/2 for two dimensional plaquettes in four

dimension using duality, or in three dimension place independently 2 cells in the 3D square

grid. Informally look at the critical p for full infinite surface and prove RSW for plaquettes

in cubes. That is, if the probability of no open path from top to bottom in a n× n× n box

with probability at least 1/2, then no open path from top to bottom in a cube 2n× 2n× n,

with probability bounded away from 0 independently of n.

A comment on large graphs and percolation. In the category of planar graphs, in view of

the (discrete) conformal uniformization, transience (equivalently conformally hyperbolic) is a

natural notion of largeness. In the context of Cayley graphs nonamenability serves as a notion

of large Cayley graphs. Thus the still open conjecture ([4]) that there is a non empty interval

of p’s so that p− Bernoulli percolation admits infinitely many infinite clusters iff the group is

nonamenable, shares some flavor with conjecture 2.1. As both suggest that a graph is large

provided there is a phase with infinitely many infinite clusters.

3 Isoperimetric inequalities and Russo’s 0-1 law

We endow the discrete cube Ωn = {−1, 1}n with the probability product measure µp where

the probability for each bit to be 1 is p. A Boolean function f is a function from Ωn to {−1, 1},
and f is monotone if changing the value of a variable from -1 to 1 does not change the value of

f from 1 to -1. The influence of the kth variable on f denoted by Ipk(f) is the probability that

changing the kth variable will change the value of f . The total influence is Ip(f) =
∑n

k=1 I
p
k(f).

We denote µp(f) = µp{x : f(x) = 1}, and write Varp(f) = 4µp(f)(1− µp(f)). (If p = 1/2 we

omit the superscript/subscript p.)

A basic result in extremal and probabilistic combinatorics going back to Harper (and

others) is the isoperimetric inequality. For the measure µp the isoperimetric relation takes the

form (see, e.g. [19, 20]):

Theorem 3.1.

pIp(f) ≥ µp(f) logp(1/µp(f)).

If f is monotone then µp(f) is a monotone function of p. Fixing a small ε > 0 the threshold

interval of f is the interval [p, q] where µp(f) = ε, µq(f) = 1 − ε. A fundamental lemma by

Russo [25] and Margulis [22] asserts that for a monotone Boolean function f ,

dµp(f)/dp = Ip(f).
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The deep Russo’s 0-1 law [25] asserts informally that the threshold interval of a Boolean

function is of size o(1) if all variables have o(1)-influence. In view of the Russo-Margulis

lemma understanding the total influence is crucial for understanding the threshold window of

a Boolean function. Sharp form of Russo 0-1 theorem and various related results were proved

in the last two decades and Fourier methods played an important role in these developments.

We mention especially the paper by Kahn, Kalai and Linial [18] and subsequent papers [8,

28, 14, 12], and books [15, 23]. To a large extent, this study is centered around the following

problem.

Problem: Understand the structure of Boolean functions of n variables for which

Ip(f) ≤ K
1

p
µp(f) logp(1/µp(f)).

We will quickly describe some main avenues of research and central results regarding this

problem. For a more detailed recent survey see [20].

1. For the case where both p and µp(f) are bounded away from zero and one (or even when

log(1/p)/ log n→ 0) and K is bounded, Friedgut (1998) [12] proved that such functions

are approximately “juntas,” namely, they are determined (with high probability) by

their values on a fixed bounded set of variables. This result can be seen as a sharp form

of Russo’s 0-1 law and it has a wide range of applications.

2. For the case where K is bounded, µp(f) is bounded away from zero and one, but

log(1/p)/ log n is bounded away from zero, there are important theorems by Friedgut

(1999) [13], Bourgain (1999) [7] (see below), and Hatami (2010) [17]. These results have

important applications for proving sharp thresholds theorems. Hatami’s work is based

on a mysterious while important notion of pseudojuntas.

3. The case where K is bounded, and µp(f) is small is wide open. This case is impor-

tant on its own and may have some applications for finding the critical probability, see

Conjecture 3.3.

4. Cases where K = 1 + ε are of different nature and are also of much interest. See, e.g.

[10, 11].

5. There are few results regarding the case that K is unbounded and especially when K

grows quicker than log n. (One such result is by Bourgain and Kalai for functions with

various forms of symmetry [9].) This is of great interest already when both p and µp(f)

are bounded away from 0 and 1.
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We will mention now a theorem of Bourgain and a far-reaching related conjecture.

Theorem 3.2 (Bourgain [7]). There exists ε > 0 with the following property. For every C

there is K(C), such that if Ip(f) < pC then there exists a subset R of variables |R| ≤ K(C)

such that

µp(x : f(x) = 1|xi = 1, i ∈ S) > (1 + ε)µp(f).

Conjecture 3.3 (Kahn and Kalai Conjecture 6.1 (a) from [19]). There exists ε > 0 with the

following property. For every C there is K(C), such that if Ip(f) < pCµp(f) log(1/µp(f))

then there exist a subset R of variables |R| ≤ K(C) log(1/µp(f)) such that

µp(x : f(x) = 1|xi = 1, i ∈ S) > (1 + ε)µp(f).

Several attemts for stronger conjectures (such as Conjectures 6.1(b), 6.1 (c) from [19])

turned out to be incorrect. We conclude with another approach for understanding Boolean

functions with small influence. The first step is the important Fourier-Walsh expansion.

Every Boolean function f can be written as a square free polynomial f =
∑
f̂(S)xS, where

xS =
∏
{xi : i ∈ S}. (The coefficients f̂(S) are called the Fourier coefficients of f .) It is easy

to verify that
∑
f̂ 2(S) = 1 and that

∑
f̂ 2(S)|S| = I(f). It follows that

Proposition 3.4. For every ε > 0 a Boolean function f can be ε · Var(f)-approximated by

the sign of a degree-d polynomial where d = 1
ε
I(f).

However, we note that Boolean functions described as signs of low degree polynomials may

have large total influence. Our next step is to consider representation of Boolean functions

via Boolean circuits. Circuits allow to build complicated Boolean functions from simple ones

and they have crucial importance in computational complexity. Starting with n variables

x1, x2, . . . , xn, a literal is a variable xi or its negation −xi. Every Boolean function can be

written as a formula in conjunctive normal form, namely as AND of ORs of literals. A circuit

of depth d is defined inductively as follows. A circuit of depth zero is a literal. A circuit of

depth one consists of an OR or AND gate applied to a set of literals, a circuit of depth k

consists of an OR or AND gate applied to the outputs of circuits of depth k − 1. (We can

assume that gates in the odd levels are all OR gates and that the gates of the even levels are

all AND gates.) The size of a circuit is the number of gates. The famous NP 6= P-conjecture

(in a slightly stronger form) asserts that the Boolean function described by the graph property

of containing a Hamiltonial cycle, cannot be described by a polynomial-size circuit.

A theorem by Boppana [6] (the monotone case) and Hastad [16] (the general case) asserts

that if f is described bt a depth d size M Boolean circuit then I(f) ≤ C(logM)d−1. We
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conjecture that functions with low influence can be approximated by low-depth small size

circuits. A function g δ-approximates a function f if |E(f − g)2| ≤ ε.

Conjecture 3.5 (Benjamini, Kalai, and Schramm [2], 1999 (Slightly extended)). For some

absolute constant C the following holds. For every ε > 0 a Boolean function f can be ε·Var(f)-

approximated by a circuit of depth d of size M where

(logM)Cd Var(f) ≤ I(f).

4 Conclusion

Congratulations, Lucio for your remarkable career and contributions and best wishes for the

future. It is time for us to meet!
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