Pick an n-vertex graph uniformly at random. Pick another one. Will it
have the same chromatic number? Or if not, how different are their chromatic
numbers likely to be if n is large?

The chromatic number of a random graph is a random variable, so what we
are really asking is: Is this random variable essentially deterministic? That is,
is the weight of the distribution concencentrated on one value, or on just a few
values which are close together?

Until recently we did not know whether or not this is the case. In this blog
post I'll describe a new result showing that, at least for infinitely many n, the
chromatic number of a random n-vertex graph is not concentrated on fewer
than about /n consecutive values.

Random graphs

A uniform n-vertex graph is generated by the random graph G, 1/, where we in-
clude each possible edge independently with probability 1/2, and more generally
we can ask about the chromatic number x(G,, ) of Gy p.

Results about x(Gp,p) generally fall into one of two categories: Can we find
(i) upper and lower bounds for its typical value, and (ii) bounds on how much
it varies about this typical value?

The typical value

On (i), we have the well-known 1987 result of Bollobds who showed that, with
high probability (whp), x(Gj 1/2) ~ n/(2logy n). This was improved and gen-
eralised several times, the current best bounds are from 2016:
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(I am writing out this result because it will become important when talking
about question (ii) later.)

Upper concentration bounds

So how about the width of the distribution of x(Gp, ) — what is the length of
the shortest interval (or rather sequence of intervals) which is likely to contain
X(Gn,p)?

Of course (1) is already a weak concentration type result, giving an explicit
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to specify the interval, we cagn do a lot better.

The starting point for question (ii) is the classic 1987 result of Shamir and
Spencer, who showed that for any function p(n), x(Gpp) is whp contained in
some sequence of intervals of length about /n. If p — 0 quickly enough, how-
ever, much sharper concentration holds: in 1997, Alon and Krivelevich reduced
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the interval length to only 2 in the case p < n~1/2=¢. So here the chromatic

number behaves almost like a deterministic function; almost all of the weight
of the distribution is on two consecutive values.

The opposite question

In view of strong results showing that the chromatic number is sharply concen-
trated, in the late 1980s Bollobds raised the following question (later popularised
by him and Erdés): Can we find any examples where x(Gp,p) is not very sharply
concentrated? This is trivially true for p = 1 — 1/(10n) (as noted by Alon
and Krivelevich), but how about non-trivial examples, and what about the most
natural special case, p = 1/27

This question remained open for quite some time, for a simple reason: while
we have a number of standard tools to prove upper bounds on the concentration
of a random variable (for example the martingale concentration argument of
Shamir and Spencer), we have few ways of giving lower concentration bounds.
(Unless we can work out the entire approximate distribution, for example by
proving asymptotic normality.)

A lower bound for concentration

| will sketch the main ideas needed for the following result:

Theorem 1 (H. 2019; H., Riordan 2021). Let ¢ > 0, and let [sp, t,] be a
sequence of intervals such that x(Gp, 1/2) € [sn, tn] whp. Then there are infinitely
many values n such that

0, = t, — s, > nt/?¢.

Of course we can also replace ¢ with some function o(1) which tends to 0
slowly. Up to this o(1)-term, the lower bound matches Shamir and Spencer's
upper bound.

A word of caution: The theorem only says that there are some n so that
X(Gp,1/2) is not very sharply concentrated. It does not tell us what these values
n are, and no bound is given for the other n. In fact, we do not believe the
conclusion of Theorem 1 is true for every n — more on this later!

Basic proof strategy
The proof needs two ingredients:

(1) A (weak) concentration type result

A result that says that, whp, [x(Gp1/2) — f(n)| < A(n) for some well-
behaved function f(n) and an error term A. Here, A is much larger than



the scale on which we are trying to prove non-concentration. We also
need a lower bound on the slope of f,
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where we will specify a = «(n) later.

(2) A coupling result

A coupling that shows that, for n and some slightly larger ', x(Gp1/2)
and x(G,y 1/2) are close together. More specifically, we need a coupling
of Gp1/o and Gy o with n = n+4 ar (with o as above) so that with
probability at least 1/4, say,

X(Gn’,1/2) < X(Gn,1/2) +r.

Now suppose [sp, ty] is a sequence of intervals as in Theorem 1. As shown in
the picture, we now know that x(Gp,1/2) is concentrated around a function f(n)
with slope more than 1/« (blue area), but it also follows from the coupling that
the slope between the concentration intervals (red lines) is at most r/(ar) =
1/a.

n

If all intervals were short, then as we increase n, eventually this would lead
to a contradiction: an interval [sy, t,] lying outside the blue area. So there must
be at least one long interval.

Working out the numbers, under certain reasonable conditions there is an
interval of length about adr. We will have « of order log n, § of order 1/ log? n
and r close to \/n.



Independence number and large independent sets

So what's the function a(n)? This turns out to be the independence number
of G, 1,0, that is, the size of the largest independent vertex set. Matula and
independently Bollobds and Erdds proved that the independence number of
Gp,1/2 behaves almost deterministically: for most n, whp it takes an explicitly
known deterministic value a = a(n) = 2 log, n.

What does this have to do with (G, 1/2)? Each colour class in a colouring
(i.e. all the vertices of one particular colour) is independent, because neighbour-
ing vertices must be coloured differently. So there are at most a(n) vertices in
each colour class, and therefore x(G,1/2) > n/a(n). We saw in (1) that this
easy lower bound is in fact asymptotically correct.

We call an independent set of size « an a-set. It is plausible that the optimal
colouring of G, 1/, contains all or almost all a-sets as colour classes. Roughly
speaking, this is because the expected number of k-colourings is dominated by
colourings with as many a-sets as possible.

Let X, count the number of a-sets, then it can be shown that X, is ap-
proximately Poisson with mean p, = n?, where = 6(n) € [o(1), 1+ o(1)]. In
particular, X, typically varies by about |/u,. If we must use all a-sets in the
colouring, then it seems plausible that the overall number of colours we end up
with also varies by roughly this amount. (Divided by log n, as we will see in a
moment.)

The weak concentration result

Luckily we already have a suitable estimate for (G, 1/5) in (1). Writing f(n)
for this estimate, then for most n,
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So what is the effect of having one extra a-set in G, 1/,7 Using one colour for
this a-set, we need to colour the remaining n — « vertices. So one extra a-set

should save us about
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colours. So \/liy extra a-sets should reduce x(Gy 1/2) by about \/fia/ log n.

The coupling

We construct the coupling in the following way: take n’ = n + ra vertices
(we will pick r later). Choose r vertex sets of size a uniformly at random and
make them independent sets, and then include every edge outside these r a-sets
independently with probability 1/2.
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The inner graph G on n vertices is simply G, 1/5. It is also clear that, if G’
is the outer graph on n’ vertices, then

X(G") < x(G) +r.

This is because any colouring of G can be extended to a colouring of G’ by
giving a new colour to each of the r a-sets.

The trouble is that G’ is not distributed as Gpy,12 — we have disturbed
the distribution by planting the r a-sets. The key point is that, as long as r is
not too large — less than the standard deviation /p, of X, — then G’ and
Gpy,1/2 are very similar. This makes sense on an intuitive level: the random
graph doesn’t ‘notice’ the extra a-sets as long as we have planted fewer than
the natural fluctuation \/fiq.

So we let r = o(y/Jta) (or in fact r = €,/Jiq works). For the formal proof,
we bound the total variation distance of the two random graph models.

Tying it all together

The two ingredients above can be combined to show that for every n, there
is some nearby n* with concentration interval length £« > C+\/pq(n*)/ log n*,
with o (n*) & pe. If we pick n so that p, is close to n, Theorem 1 follows.

How close to Shamir and Spencer's upper bound /n can we actually get? At
the moment, nothing better than n'/2=°(1) for some unspecified function o(1)
is possible. The main bottleneck is the size of the error term A = o(n/ log? n)
in (1).

Konstantinos Panagiotou and | have been working on an improved estimate
for X(Gn,1/2) in a paper we are currently writing up. Assuming this result, Oliver
Riordan and | can prove that there are infinitely many n such that
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The best upper concentration bound for p = 1/2 is y/n/ log n, due to Alon.

Which of these is closer to the truth? We conjecture that for the worst case
n, the width of the distribution of x(G, 1/2) matches our lower bound up to the
constant. However, the concentration behaviour seems to be very different for
different n, as described below.

The Zigzag conjecture

Let g(n) be the standard deviation of x(G,1/2). We already gave a heuristic
argument that g(n) > C,/ia/ log n, coming from fluctuations in the number
X, of a-sets.

There is another conjectured lower bound coming from fluctuations in X,_1,
the number of (a — 1)-sets, namely

g(n) = C v
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The Zigzag conjecture, made recently by Bollobds, Heckel, Morris, Panagiotou,
Riordan and Smith, states that at least for most n, g(n) is essentially the max-
imum of these two lower bounds. Ignoring n°()-terms, we have the following
simplified statement.

Conjecture 2 (Zigzag conjecture). Define § by letting jio, = n’. Let

0 1-6
)\—maX<2,2).

Then, if g(n) denotes the standard deviation of x(Gp 1/2),
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It is not hard to show that the function \(n) ‘zigzags' between 1/4 4 o(1)
and 1/2+0(1), roughly linearly in log n, as shown in the picture (the orange and
blue lines are the lower bounds coming from a- and (« — 1)-sets, respectively).

There's a detailed heuristic explanation of the conjecture in the paper. We
also think that we have a pretty good idea of the behaviour of g(n) at the
extreme points. In particular, we believe that in the ‘worst case’, g(n) is of
order n'/2log log n/ log® n, while in the 'best case’ it's of order n1/4/ |0g7/4 n.



