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Abstract

A recent paper [28] claims to have achieved “quantum computational advantage”
using photons. Specifically, the paper reports a Gaussian boson sampling experiment
representing a quantum state in ∼ 1030-dimensional Hilbert space, and a sampling rate
that is ∼ 1014 faster than that of digital supercomputers. This claim is based on certain
statistical tests measuring the proximity of the empirical samples to the outcomes of
noiseless simulations of the quantum experiment on a classical computer. We point
out a polynomial-time algorithm from our 2014 paper [15] that may achieve similar or
better sampling quality for the statistical methods of [28]. Our algorithm is based on
taking a truncated Fourier–Hermite expansion on the Boson Sampling distribution.

1 Introduction

A recent paper [28] claims to have achieved a “quantum computational advantage” using
photons. Specifically, the paper reports a a room-temperature photonic device implementing
Gaussian boson sampling experiment with a sampling rate that is ∼ 1014 faster than that
of digital supercomputers. This claim is based on certain statistical tests measuring the
proximity of the empirical samples to the outcomes of noiseless simulations of the quantum
experiment on a classical computer, and on comparing the empirical samples against a few
other distributions.

We point out a polynomial-time algorithm from our 2014 paper [15] that may achieve
similar or better sampling quality as tested by the statistical methods of [28]. Our algorithm
is based on taking a truncated Fourier–Hermite expansion of the boson sampling distribution.

In view of the results of [15], the statistical reasoning of [28] is incorrect and therefore
the conclusion of achieving huge quantum computational advantage is unfounded.

We note that apart from the matter of quantum advantage, the photonic experiments in
[28] appear to represent remarkable progress in controlling photonic systems.
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Boson Sampling. Boson sampling (Aaronson and Arkhipov [3]; see also Tishby and Troy-
ansky [26]) is the following computational task.

1. The input is an n×m complex matrix whose rows are unit vectors.

2. The output is a sample from a probability distribution on all multisets of size n from
{1, 2, . . . ,m}, where the probability of a multiset S is proportional to µ(S) times the
square of the absolute value of the permanent of the associated n by n minor. Here,
if the elements of the multiset occur with multiplicities r1, r2, . . . , rk, then µ(S) =
1/r1!r2! . . . rk!.

This sampling task can be achieved by an (ideal) quantum computer [26, 3]. It is not hard
to see (as noted in [15]) that noisy quantum computers with the full apparatus of quantum
fault-tolerance can also achieve boson sampling with a negligible error. Boson sampling can
be realized by linear systems of n noninteracting photons that describe a restricted regime
of quantum algorithms. Aaronson and Arkhipov proved that a polynomial-time algorithm
for boson sampling would imply that the polynomial hierarchy collapses to the third level
[3]. (This result is related to a line of research initiated by Terhal and DiVincenzo [25], and
others.)

Aaronson and Arkhipov proposed a way, based on boson sampling, to demonstrate a
quantum computational advantage (also referred to as “quantum supremacy”) without quan-
tum fault-tolerance. This bold proposal is based on three conjectures. The first conjecture,
on the computational complexity side, is that achieving an approximate version of boson
sampling, even for a (complex) Gaussian random matrix, will be computationally hard for
classical computers. The second conjecture is that this computational complexity asymptotic
hardness will come to play for moderate-size systems. The third conjecture is that approx-
imate versions of boson sampling will be able to be achieved experimentally with quantum
devices when the number of bosons is not very large, but still large enough (by the second
conjecture) to demonstrate quantum computational advantage.

The experiment reported in [28] indeed claims to have achieved a huge quantum com-
putational advantage. It is based on a variant of boson sampling called “Gaussian boson
sampling” [10], where the amplitudes are described in terms of hafnians rather than perma-
nents. (We note that, in view of several later variants, the original version of boson sampling
is referred to as “Fock state” boson sampling.)

2 Fourier–Hermite decomposition and noise

Fourier–Hermite decomposition and truncation Let hj(x) be the normalized Hermite
polynomial of degree j. For d = (d1, . . . , dn) we can define a multivariate Hermite polynomial
hd(X) =

∏n
i=1 hdi

(xi), and the set of such polynomials is an orthonormal basis for L2(Rn).
Let f be a function from Rn to R. Consider the expansion of f in terms of Hermite

polynomials, i.e.,
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f(x) =
∑
β∈Nd

f̂(β)
d∏

i=1

hβi
(xi). (1)

The values f̂(β) are called the Hermite coefficients of f . Let |β| = β1 + · · · + βn. Let
k > 0 be an integer; define

Lk(f(x)) =
∑

β∈Nd,|β|≤k

f̂(β)
d∏

i=1

hβi
(xi). (2)

A Fourier–Hermite noise operator Let ε > 0 be a noise parameter and let ρ =
√

1− ε.
We define Tρ(f)(x) to be the expected value of f(y) where y =

√
1− εx +

√
εu, and u is

a Gaussian random variable in Rn of variance 1. The description of this noise operator in
terms of Hermite expansion is [16, 15]:

Tρ(f) =
∑

β∈Nd

f̂(β)ρβ

d∏
i=1

hβi
(xi). (3)

For boson sampling the probabilities depend on complex variables and we need a slight
variant of the Fourier–Hermite decomposition and the operator Tρ that is described in [15]
and reproduced below in the second Section. We also remark that the Fourier–Hermite
decomposition is closely related to the ANOVA decomposition from statistics.

Various models for noise Kalai and Kindler conjectured in [15] that the effect of other
types of noise on the Fourier–Hermite expansion will be similar to their (mathematically
motivated) noise. This conjecture has now been supported by several works. For example,
Renema, Shchesnovich, and Garcia-Patron [22], succeeded in combining many forms of noise
into the formalism of the Fourier–Hermite expansion, including optical losses, photon distin-
guishability, dark counts in detectors, and noise on the interferometer. They also established
“exchange rates” between the various forms of noise and are able to say that ’such and such
an amount of noise in this component is equivalent to so much noise in that component.’
Shchesnovich, [24] identified the Kalai–Kindler model as expressing “noise on the interferom-
eter.” (We would guess that a loss of 50% of the photons would correspond to ρ ∼ 1/2 or so
in our model.) For other related papers we refer the reader to items 4–23 in the bibliography
of [20].

A simple Metropolis–Hastings approximate sampling algorithm Let P(x) = (P1(x),
P2(x), . . . , PM(x)) be a discrete probability distribution that depends on a real (or later com-
plex) vector x = (x1, x2, . . . , xN). Let Qi(x) be an approximate value of Pi(x) that can be
easily computed.

Now, apply the following sampling algorithm:
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Let A be a real number, A > 1. The algorithm consists of repeating two steps:
(1) Sample uniformly at random j among i = 1, 2, . . . ,M .
(2) If Qj(x) ≤ 0 throw the sample away, if Qj(x) ≥ A accept the sample, and if 0 <

Qj(x) ≤ A accept this sample with probability gj(x)/A.
Then, repeat.

Polynomial-time-sampling for noisy boson sampling Kalai and Kindler [15] used this
algorithm with Qi(x) = Lk(Tρ(Pi(x))) to get a polynomial-time algorithm for approximating
noisy boson sampling when the noise is described by (the complex version of) (3) for a
constant level ρ of noise. They went on to show that their algorithm can be implemented
by bounded-depth (classical) circuits. Part of the analysis in [15] depends on the number
of modes being larger than the square of the number of photons (which was a standard
assumption of various theoretical studies at that time) and Kalai and Kindler conjectured
[15] that their algorithmic conclusions would hold also in the range where the number of
modes is sub-quadratic and even proportional to the number of photons. This is more
relevant to current experiments. In this case, one needs to analyze the Fourier–Hermite
description of permanents with some repeated columns which is more complex.

Polynomial-time “spoofing” For the sake of giving an easy-to-compute sampling algo-
rithm that succeeds in the statistical tests of [28] (“spoofing”) we let Qi(x) = Lk(Pi(x)).

This sampling will give us approximately the same k-marginals as P . Forcing the proba-
bilities to be nonnegative may slightly distort the marginals but will, of course, improve the
correlation with the noiseless distribution.

To understand theoretically the correlation between samples obtained by this algorithm
and the ideal probability distribution we need to estimate the L2 weight of Fourier–Hermite
coefficients for degrees at most k. When there are no repeated columns the correlation
behaves like (k−1)/n and a similar behavior can be expected for typical cases with repeated
columns as well. Of course we can get a fairly good picture from simulations.

Noise sensitivity A further result from [15] is that for a wide range of sub-constant
levels of noise the correlation between the noisy distribution and the ideal distribution tends
to zero. (This property is referred to as noise sensitivity.) This suggests that empirical
distributions for boson sampling experiments will be non-stationary and even chaotic and it
will be interesting to test this empirically also on the data of [28].

Interpretation It is argued in [15] that the two results, polynomial-time approximation for
noisy boson sampling for a constant rate of noise, and noise sensitivity even for sub-constant
rate of noise, weaken the possibility of demonstrating a quantum advantage via boson sam-
pling without quantum fault-tolerance. Kalai [13, 14] later extended this interpretation to
general NISQ systems.

Judging the new claims of a huge quantum computational advantage We can
expect that our algorithm will give an easy polynomial-time algorithm that may pass the
statistical tests applied in the Gaussian boson sampling experiments from [27, 28], as well
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as or better than the reported results. This is in contrast to the fantastic claims of the huge
quantum computational advantage reported in [28]. In any case, the statistical methodology
used in [28] is flawed since a correct argument for quantum advantage needs to exclude (or
give good evidence against) the possibility of efficient classical sampling methods leading to
samples of similar quality.

Further Remarks

The k-marginals of boson sampling distributions. The fact that any k-marginal
distribution of the boson sampling distribution can be computed by a classical deterministic
algorithm of complexity O(nk) is proved in [11], see also [8] and Gurvits’s pioneering paper
[9]. The fact that the k-marginal distributions are not flat was proved in [4].

Gaussian boson sampling, hafnians, and torontians For full analysis of the new
photonic experiment that is based on Gaussian boson sampling we would need to explore
the Fourier–Hermite expansion for hafnians [10, 19]. The hafniam of a symmetric 2n × 2n
matrix z is the sum of

∏n
i=1 za(i)b(i) where {a(1), b(1)}, {a(2), b(2)}, . . . {a(n), b(n)} goes over

all partition of [2n] into n sets with two elements. While permanents correspond to weighted
counting of perfect matchings in bipartite graphs, hafnians correspond to counting perfect
matchings in general graphs. A basic reference on Gaussian boson sampling and hafnians is
by Hamilton, Kruse, Sansoni, Barkhofen, Silberhorn, and Jex [10].

Torontians refers to a situation where we can only identify if a mode is occupied but
cannot identify its multiplicity. This is relevant both to Fock state boson sampling and to
Gaussian boson sampling and may actually simplify the combinatorics.

Noise-stable and purely noise-sensitive bosonic states Kalai and Kindler posed the
question of identifying “noise-stable” boson sampling states, namely, states that are well
approximated by their low-degree expansions. Another interesting question is whether there
are pseudo-random boson sampling states, namely, states where all the Fourier–Hermite
coefficients are very small in absolute value. Renema [20] provides an interesting example
giving an affirmative answer to the second question.

Random circuit sampling and the Google experiment Another notable approach
to demonstrating huge quantum computational advantage is via random (quantum) circuit
sampling (RCS) [5]. In this case, the relevant expansion is the Fourier–Walsh expansion
and the behavior is different since the Fourier coefficients are flat. See, Boixo, Smelyanskiy,
and Neven ,[7] and [5] (supplement, IX.D). Therefore, with random quantum circuits we
cannot expect truncation to give polynomial-time approximation, but we can still expect it
to reduce the number of required steps proportionally to the value of the target fidelity.

Statistical aspects of the Google experiment and NISQ systems are studied in [23]. This
study is relevant also to some aspects of the new photonic experiment. In both cases,
we can model the noisy distribution as a mixture of the noiseless distribution and other
distributions that describe various error events (Formula (2) in [23]). A notable difference
is that in the Google experiment these other distributions are largely uncorrelated with the
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noiseless distribution (and also among themselves), and this is not the case in the boson
sampling experiment.

Learning The approximation from [15] allows efficient (approximate) learning of the kth-
level approximation (or the noisy approximation) of |permanent(z)|2. This is much stronger
than the ability of efficient approximation and suggests using learning packages for learning
robust quantum distributions coming from NISQ systems. It could be conjectured that,
in practice, robust probability distributions (or robust parameters of such distributions) in
NISQ systems are learnable. Namely, that it is possible to efficiently learn from examples to
sample based on the parameters of the NISQ device as to achieve similar quality to empirical
noisy sampling. (This is, of course, in very stark contrast to any claim of a huge quantum
advantage.) For learnability and complexity of quantum samples, see also [17].

Related critique Related concerns regarding [28] were raised by Jelmer Renema, Sergio
Boixo, John Martinis, and others; see [2, 1], and [20].

3 Complex variable Fourier–Hermite expansion and a

formula for permanents

We equip Cn with the product measure where in each coordinate we have a Gaussian normal
distribution with mean 0 and variance 1. We call a random vector z ∈ Cn which is distributed
according to this measure a (complex) Gaussian vector. The measure also defines a natural
inner-product structure in the space of complex-valued functions on Cn.

An orthonormal set. It is useful to use the following set of orthonormal functions, related
to the real Hermite basis.

Proposition 3.1. The functions 1, z, z̄, and h2(z) = zz̄ − 1 form an orthonormal set of
functions. Moreover, these functions are all eigenvectors of Tρ, with eigenvalues 1, ρ, ρ, and
ρ2, respectively.

For the simple proof see [15]. (Remark: For the present application we did not need to
consider a full orthonormal system of eigenvalues of Tρ.)

The recipe If the amplitude is described by a function a(zij) of a complex matrix z = zij,
let f(z) = |a(z)|2 be the associated probability, and expand f as a polynomial in products
of zij, z̄ij, and h2(zij). Lk(f) is the degree-k truncation of this expansion.

Permanents. Let z = {zi,j}i,j=1,...,n be an n×n complex matrix of, and let permanent(z) =∑
σ∈Sn

∏n
i=1 zi,σ(i) be its permanent. We also let

f(z) = |permanent(z)|2 =
∑

σ,τ∈Sn

n∏
i=1

zi,σ(i)z̄i,τ(i). (4)
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Observation: In order to study Lk(f) and Tρ(f), consider one term in the above formula
that corresponds to the permutations σ and τ , and let T be the indices i on which they agree,
and T c = [n] \ T be its complement. We can write such a term as

n∏
i=1

zi,σ(i)z̄i,τ(i) =
∏
i∈T

(zi,σ(i)z̄i,σ(i)) ·
∏
i∈T c

zi,σ(i)z̄i,τ(i) =
∏
i∈T

(1 + h2(zi,σ(i)))
∏
i∈T c

zi,σ(i)z̄i,τ(i)

=
∑
R⊆T

 ∏
i∈T\R

h2(zi,σ(i))
∏
i∈T c

zi,σ(i)z̄i,τ(i)


The degree of a term For each product in the above sum we assign a degree: we add 1
to the degree for each multiplicand of the form zi,j or z̄i,j, and 2 for each multiplicand of the
form h2(zi,j). The degree of a term

∏
i∈T\R h2(zi,σ(i))

∏
i∈T̄ zi,σ(i)z̄i,τ(i) is thus 2(|T | − |R|) +

2(n− |T |) = 2(n− |R|).
Now, Lk(f) is the sum of all terms of degrees at most k.

Repeated columns, and torontians The above formula extends to permanents of ma-
trices with repeated columns. For those, the expression will still be multilinear, so the
expansion involves only z, z̄ and h2. As far as we can see, it extends to Hafnians as well.

For permanents of complex Gaussian matrices without repeated columns the L2-contributions
of the degree-k terms are all the same. Therefore the degree-k truncation yields a correlation
of (k− 1)/n with the noiseless distribution. These terms are dominant when m, the number
of modes, is more than quadratic in n the number of photons. When m is proportional to
n typical terms will have repeated columns and the combinatorics is more complicated. (I
would still expect that for a typical term < Lk(f), f > is rather large.)

For the case where there are repeated columns we did not find closed formulas and it
is less clear how the L2 norm is distributed between levels. However, note that in the case
at hand it is only possible to measure whether a mode is occupied or not and this leads
to the notion of torontians, which means that we sample according to the set of occupied
modes. In the case of torontians based on “Fock state boson sampling,” we need to sum
up the probabilities corresponding to all minors with the same support. In this case the
L2 computations are different and perhaps simpler compared to the case where we record
the multiplicities. It is possible that there will be closed formulas for the combined L2

contributions of degree-k terms of
∑

|permanent(z)|2 when we sum up permanents with a
given support. This is an interesting topic for further study, that may extend to the hafnian
case.

3.1 Low-degree expansions

For convenience we present the first few terms in the expansion of |permanent(z)2|, where
(z) = (zij) is an n× n complex Gaussian matrix. (To move to boson sampling probabilities
we need of course to normalize.)

k = 0 approximation S(0) = n!
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k = 1 approximation

S(1) = S(0) + (n− 1)!
∑
i,j

[(|z(i, j)|2 − 1)] + (n− 1)!
∑

i,j,j′;j′ 6=j

z(i, j)z̄(i, j′)

k = 2 approximation
S(2) = S(1)+

+(n− 2)!
∑

i1, j1, i2, j2; i1 6=j1, i2 6=j2

(|z(i1, j1)|2 − 1)[(|z(i2, j2)|2 − 1)

+(n− 2)!
∑

{(|z(i1, j1)|2 − 1)z(i2, j2)z̄(i2, j
′
2) :

i1, i2, j1, j2, j′2, j′2, where all i’s and all j’s are distinct}

+(n− 2)!
∑

{(z(i1, j1)z̄(i1, j
′
1))z(i2, j2)z̄(i2, j

′
2)) :

i1, i2, j1, j′1, j2, j′2, j′2, where the i’s are all distinct, and the j’s are all distinct}

k = 3 approximation
S(3) = S(2)+

+(n− 3)!
∑

{(|z(i1, j1)|2 − 1)(|z(i2, j2)|2 − 1)(|z(i3, j3)|2 − 1) :

i1, i2, i3, j1, j2, j3, where all i’s and all j’s are distinct}+

+(n− 3)!
∑

{(|z(i1, j1)|2 − 1)(|z(i2, j2)|2 − 1)z(i3, j3)z̄(i3, j
′
3) :

i1, i2, i3, j1, j2, j3, j′3, where all i’s and all j’s are distinct}+

+(n− 3)!
∑

{(|z(i1, j1)|2 − 1)z(i2, j2)z̄(i2, j
′
2)z(i3, j3)z̄(i3, j

′
3) :

i1, i2, i3, j1, j2, j′2, j3, j′3, where all i’s and all j’s are distinct}+

+(n− 3)!
∑

{z(i1, j1)z̄(i1, j
′
1)z(i2, j2)z̄(i2, j

′
2)z(i3, j3)z̄(i3, j

′
3) :

i1, i2, i3, j1, j′1, j2, j′2, j3, j′3, where all i’s and all j’s are distinct}.
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Figure 1: A schematic picture of the two hierarchies of approximations

4 A tale of two hierarchies and related noise models

Renema’s [20] decomposition Renema [19, 20] considered an interesting hierarchy of
approximations related to the analysis of a specific noise model for “distinguishability,” where
the noise pushes the system toward a classical behavior. This hierarchy is based on splitting
the interference pattern into a series of j-photon interference terms, where j runs from 0 to
the number of photons. It relies on several earlier works, such as Renema, Shchesnovich,
and Garcia-Patron [22].

Mathematically speaking, Renema’s kth approximation consists of taking all the contri-
butions (in equation (4) coming from pairs of permutations π, τ that agree in at least n− k
places. Our hierarchy consists of further truncating each term in Renema’s hierarchy. (In
a companion manuscript [21], Renema also presented our Fourier-Hermite hierarchy in his
language.) Renema’s hierarchy for k = 1 is of special interest: the weight corresponding to
an n × n matrix zij is the permanent of the real nonnegative matrix (|zij|2). See Figure 1
for a schematic picture of the two hierarchies.

Computational matters Renema [20] proposed to use an algorithm by Clifford and Clif-
ford [8] to efficiently sample based on the kth term in his approximation. For k = 1 we
consider “distinguishable” boson sampling where the probability corresponding to an n× n
matrix zij is the permanent of the real nonnegative matrix (|zij|2). It is interesting to note
that computing precisely the probabilities is #P complete, but classical computers are able
to sample efficiently on the nose by a simple row after row procedure. The Clifford and
Clifford algorithm extends this observation for larger values of k. Earlier Renema noted that
when k is fixed, polynomial-time algorithms based on Jerrum, Sinclair, and Vigoda’s [12]
(JSV) algorithm for approximating permanents of positive matrices can be used for approx-
imate sampling. It follows immediately that JSV allows for polynomial-time algorithm to
approximate the probabilities for the case k = 1 and what is more remarkable and requires
some work is that for a fixed k > 1 one only needs polynomially many calls to JSV.

We could expect that our hierarchy would allow better approximation of the probabilities
for the same amount of computation. (The JSV algorithm is polynomial time but, practically,
not very quick.) On the other hand, when it comes to approximate sampling, it is not clear
what is the way to get better approximation for the same computational effort. It would be
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interesting to test these matters empirically.

Modeling noise, and noise in practice Renema’s hierarchy is motivated by his study
of a specific noise model related to “distinguishability” Indeed, it allows to give a complete
description of this type of noise. Our noise model was mathematically motivated but, as
it turns out, it expresses “noise on the interferometer” (see, Shchesnovich [24]). We note
also that in [15] (Appendix 1) we considered modeling mode-mismatches noise, which seems
relevant to “distinguishability,” and that it reduced high Fourier–Hermite terms as in our
original suggestion.

Of course, an interesting question is which of the truncations (or rather heat-kernel op-
erators based on them) is more relevant to realistic forms of noise. We expect that our
truncation is more relevant to realistic noise. This is because while both hierarchies cor-
respond to two different types of realistic noise we can expect that in reality both of them
would occur. For realistic noise modeling we may consider heat operators based on different
exponents for terms according to both hierarchies. In any case, this is an interesting question
for further theoretical and empirical study, and, in particular, on the data from [28]. We
note that it follows from the analysis in [15] that NISQ sampling exhibits non-stationary and
even chaotic noise ingredients. This is supported by statistical studies of the Google data,
and could be checked for the new photonic data.

Connection with computations based on Feynman diagrams Jelmer Renema kindly
pointed out to us a connection that he himself learned from Valery Shchesnovich between
his hierarchy of approximations and computations based on Feynman diagrams. Renema’s
hierarchy is based on taking the first k terms in an expansion based on Feynman diagrams,
and we (apparently) take them and truncate them as well, and this can be of interest in some
wider contexts. In general, computations based on Feynman diagrams are notoriously diffi-
cult even for the first few terms, and indeed this difficulty gave one of the early motivations
for quantum computers. Efficient approximation methods based on Fourier-like truncations
could be of great experimental and theoretical interest. (It is possible that this will shed a
new point of view on known heuristic computational methods.)
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