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EXTREMAL SETS OF SUBSETS SATISFYING
CONDITIONS INDUCED BY A GRAPH

David E. Daykin and Peter Frankl

ABsTracT let & always denote a set of subsets of N=
{1,2,...,n}. If #,, %, are such that Xe#, Ye%, imply XN YO
and X#Y, then 27 min{|%,|, |%al}=<(3—+/5)/2, and this is essentially
best possible. Now we introduce more general results.

Four conditions which X, Y<N might satisfy are I: XN Y# g,
U:XUY#N, C: if X#Y then XZY, and #: X#Y. Let J be a
subset of {I, U, C, #}. Let I be a finite loopless graph with vertex set
{1,2,...,v} and edge set E. Define

A(n) =27 max{]#,|+. . AHF =0,
k() =27 max{min{| %], . . ., |%. =<1,

where the maxima are over all F15 ..., F, such that (i, DeE Xe %,
YeF imply X, Y satisfy all the conditions in J.

We study the sequences A(n), u(n) and show they have limits A, p.
They are non-decreasing except possibly if J is C, IC, UC, TUC.
Clearly A, u depend only on T, J.

We determine A in terms of fractional stability numbers of I". The
case J=C for A generalizes to Kleitman-Lubell-Yamamoto—
Meshalkin (or Lubell—Yamamoto—Meshalkin) posets.

When I' is an edge, nef}, (3—v5)/2, &. For I arbitrary w(n)=3%
for J=LU and u(n)=3 for J=IU. When I js a directed circuit
w(n) =% for J=C#. When I is undirected and J — # we determine p
in terms of the fractional chromatic number of I"

The paper contains much more information.

1. Introduction

Let n be a positive integer, let N be the set {1,2,...,n} and let 2" be the
set of subsets of N. We reserve the letters F, 4, ¥ for subsets of 2", Four
conditions which X, Y& N might satisfy are

I (non-empty intersection) XNY+#J;

U (union not N) XUY#N;

C (not properly contained) if X#Y then X¢Y;
# (not equal) X£Y.
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We reserve the letter J for a subset of {I,U,C, #}. For example if J=C
and & is such that all X YeF satisfy J, this means that no member of %
is a proper subset of another, in other words that & s an antichain.
The origins of our work might be traced to a classica] result of Sperner.
In 1928 he showed that if & is an antichain then |%|< Sper(n), where

Sper(n) = (l%r:l.' ) = Olggn {(:L)}

This result was generalized independently by Yamamoto (in 1954),
Meshalkin (in 1963) and Lubell (in 1966) to the well-known Lubell-
Yamamoto-Meshalkin (LYM) inequality:

y 1/(")s1 if & is an antichain.
XeF IXI

In 1972 Brace and Daykin [3] studied max |%| over all F such that all
X, YeF satisfy a subset J of the conditions I, U, C. They conjectured
that max |#]=2"4 when J=TU. This was proved by Daykin, Hilton,
Lovisz, Schénheim, Seymour and others.

The above results all concern one set %, and further details can be
found in the recent survey by West [15]. In this paper we have two sets
&, § or more. Just one of our results is that max{min{|%], |¢[}} = 2"/4 over
all #, 4 such that all X e %, Y € ¢ satisfy IU. This is clearly stronger than
the above result about IU.

2. Statement of main results

Throughout this paper I' will be a finite loopless graph without multiple
edges having vertex set {1,2,..., v} and edge set E(I'). We assume that
E(N# 3 so v=2. We think of sets %,, ..., &, as sitting at the vertices
of I

Let J be a non-empty subset of the conditions LU, C, #. Define

A(n)=2" max{|F|+.. .+ |F,[}=<wv,
pn)=2" max{min{|%,|, ..., %, B=<1,

where these maxima are over all #,,..., %, such that (& HeEW),
XeF, Ye%, imply that X, Y satisfy all the conditions in J.

The motive for this paper was to study the sequences A, A(Q2),...and
p(), 1n(2),.... They both depend on I' and J and they are non-
decreasing except possibly if J is C, IC, UC or IUC. We show in Section 3

e

EEs T

9. EXTREMAL SETS OF SUBSETS 109

that they always have limits A, . respectively. Clearly A, n depc?nd only
on I' and J. Now I" may be directed or undirected but if C¢J this makes
no difference. So when I' is directed we always assume Ce J.

Results on A(n) and A

These are virtually complete. We remind the reader that a s1.1b-set A of
the vertex set {1, ..., v} is independent if i, je A implies that .(z, éEEW).
Also the independence number a(I') of I" is max{|A[} over mde:pendent
sets A. Suppose that A is independent and |Al=a(l}. For 1<i<yp put
F=2"if ic A but F = if i¢ A. This example is JTUC# and ?21)10WS that
a(I")<A(n) always. In Section 4 we will define «®(I") and « (") for

THEOREM 2.1 If I is undirected then

a®(I") forJ=1,U,
a@(I) if J=1IU,

al)  if #eJ,
a(l')  forn=ny=nuI) and J =C, IC, UC, IUC.

Aln)=

When I is a triangle ng is 5,2,2,1 as J is G, IC, UC, IUC.

THEOREM 2.2 If I is directed then A = (") if CeJ and A(n)=a(I) if
C #el.
THEOREM 2.3 If I is a directed edge and Ce T then al)=1 and
_J1+27" Sper(n) ifJ=C,
Aln)= 1 otherwise.

In view of these three theorems it only remains to evaluate A(n) for
directed I' in the cases C, IC, UC, IUC.

Results on p(n) and p

First we have a lower bound for u(n).

h Lemma 2.1 Form=2,3,... we have

2m—1
272 < w(n) for all J, Twithvs( mm )and 2m=n.
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A pleasing discovery is

THEOREM 2.4

for7=1, U,
if J=IU.

[ DO

p(n)=

We get an upper bound for r(n) by looking at a single edge of I'. When
I' is undirected and bipartite, doing so is in fact sufficient to evaluate
p(n). It turns out that when I is an edge the only possible values of W are
% (3-+5)/2=0.38197 and 4, as shown in Table 2.1

TABLE 2.1 Values of © when I' is an edge

Undirected Directed I

LU, # C,C# i

I#, U# IC, UC, IC#, UC# £3—J5)/2
3

Otherwise IUC, TUC+#

When I' is a directed circuit we prove that u(n)=2% if J is Cs in
Theorem 11.1. When I’ is undirected and J is # we determine W in terms
of the fractional chromatic number of I’ in Theorem 10.1. Clearly there is
much remaining to be discovered about w(n).

Results for Kleitman-LYM (KLYM) posets

Let P be a KLYM poset. The definition is given in Section S,and 2" is a
KLYM poset. These seem to be the natural setting for dealing with the

case J=C of 2" For 1<<i<y let F; be a subset of the elements of P. In
this context the condition C takes the form

LDeBT), peF, qeF, p#q imply p£q  (2.1)

Let m be the maximum of the cardinalities of the ranks of P. We have
three results in Section 5.

THEOREM 2.5 If I' is undirected and (2.1) holds and
m(v+1-a(IN)a(l)<|P|, (2.2)
1P max{ ), |F;[}= (D).

then

.
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THeOREM 2.6 If I is directed and (2.1) holds then
a(M)<|P[™ max{}. |F}<a(l)+|P[" m(v=1),

and these bounds are best possible.

THEOREM 2.7 If I is directed and (2.1) holds and condition # holds then
P! max{}, |} = (D).

3. The convergence of A(n) and p(n)

Let ¥,,...,%, be an example for n=m =2 with properties J. For
1<i=v put
4 ={X\{m}meXecF} and # ={X:m¢Xec%F}
Then %, ..., %, has properties J\I and &, ..., &, has properties J\U
for n =m—1. This proves that
max{An(n), Anu(n}=A(n+1) for n=1,2,...

and in particular establishes
LeMMa 3.1 We have A(D)=A(2)==...=1 for J=C, #,C#. O

Suppose we have an example %, ..., %, forn=m—1=1. }:Nge; fl())rrtlh:
second example for n = m by replacing each I.nember X of each &; by ]
two sets X and X U{m}. We call this opera:tlon doublz.ng. The.propertles
I, U, #, C# clearly carry over under doubling, and this fact yields

LEmMMa 3.2 We have A()<sA(Q)<...<v and p()<sp2)<...<1 ex-
cept possibly if T is C, IC, UC or IUC. (O

Next suppose that %,,..., %, is an example with properties J and
CelJ. For 1=si=v put

Y =F\¥H where %i=97;ﬂ(( U 9’,)

i,jYeE)
Then # is an antichain, and so

|%|—Sper(n) <|F|-|%|<|4l.

Also 9,,...,%, has properties J and #. For any k>n let us dqubIJe
%1, ...,%, a total of k —n times. The resulting example has properties J.

This shows that
A(n)—v2™" Sper(n)<<A(k) for n<=k if Cel,
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and similarly for u(n), except that the factor v is deleted. It is now easy

to see that for all J the sequences A(n) and p(n) converge with limits A
and u respectively because 2" Sper(n) =0 as n — o,

4. Independence numbers of I"

A subset A of V(I) is independent if i,je A implies (i, )¢ E(I'). The
independence number «(I") of I' is max{|A[} over independent sets A. If
r=1 the rth power fractional independence number (T of T is
max{x] +...+x’}
over all choices of real numbers X1, ..., X, such that
0=sx<1 for 1sisy, 4.1)
x+tx=<1 forall (ij)eE). “4.2)

Clearly «™(I") decreases as r increases and is not less than a(I'). We need

LEmMMA 4.1  We can achieve a™(I') with all x;€{0,3, 1}, and when r>1
we cannot achieve it in any other way.

PrOOF  Suppose some x;¢{0, 3, 1}. Put o =Y xi,
a=min{x;: 0<x; <1}, A={i:1<isy x=a),
b=max{x: 0<x;, <1}, B={i:1=<is<y x,=b},

0 A+, B# & and a<b.

Casea+b<1 HereificA and (i, e E(I') then X; + %<1 so we can
increase x; and hence .

Case a+b>1 Here if jeB and (i, )€ E(T") then x,=0 so we can
increase x;.

Case a+b=1 Here we eliminate b=1-4a and consider a as a

function of a, keeping all x; with i¢ A UB constant. The result follows by
the convexity of «. [1

5. Theorems on KLLYM posets

Let P be a ranked poset. That means there is a map rank: P—
{0,1, ..., h} such that for all P, q € P with p <gq, firstly rank(p) <rank(q),
and secondly if 2+rank(p) <rank(q) then p<p’'<gq for some p’'e P. We
assume that for 0<<i<h ranki of P, which is the set {p e P: rank(p) =i},
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has cardinality »(i)=1. We put m =max{r(0),...,»(h)} and clearly
...+v(h)=|P\. . '

V(g)u+ ose ;}u(rtherl that P is a KLYM poset. By this we mean that there is
n-gglpty list Ag, ..., A, of maximal chains A; of P s.uct} that for every

noeP the number of chains which contain p in the list is c/v(rail(l)c(li);.

’I;‘here is a growing literature about KLYM posets, cf [1, 2, 4, 6—8, h R our,

15]. Other writers have called them LYM posets, b1'1t our K is in hon

of i(leitman [13]. The set 2" of subsets of N is perhaps the most

i t example of a KLYM poset.

lmlgg? insisv I;et F, be a subset of the elements of P. We are here

interested in
|P|™* max{|F,|+. .. +|E,|}

isfyi it ike I, U, C, #. However, condi-
11 F,,...,F, satisfying conditions like I, U, C, . i
z‘éifs?} Uldo not carry over to KL'YM posets. Further, the maxnnunll ;s
triviall; |P|™ «(T") if # is among the conditions. Hence we are only left
with condition C, which here takes the form (2.1). Our results are
Theorems 2.5, 2.6 and 2.7.

ProoF OF THEOREM 2.5 Let Fy, ..., F, sati§fymg (2.1) be gi\;::n. llzfox:A ani381
maximal chain A of P consider a b%pamte graph A =A(A).
pPo<p1<...<ps say, then the vertices in one part of A are p((,, pII,: ) .a.s, gr,,l
and the vertices in the other part are Fy, F,, . . ., F,. We have (p,, F;
if and only if p; € F;.

edgi;;o?e that A h};d a+1 indepe.ndejnt edges (P,-o,- F,o), E(,F()P,“,Sﬁ‘,;c)e .
Then by definition of « there are j #j; such that '(],, i) fradicts. o
p,€F, and p, €eF, and either- p, <p;, or p,<p; this con 1).
Hencé A does not have a+1 1ndepend§nt edge§.

We now distinguish two types of maximal chain A.

de in A(A))<a for all pe A. ‘ .
%ZZ ; N(;gt(liype 1. For this type of A there is some pe A _w1th deg(p

in A(A))=a+1. Put
0(A)={peA,deg(pin A(A))=a}.

Since A does not have a+1 independent edges, by Hall’s theorem on
systems of distinct representatives, we know that |[8(A)|<a.

Next we claim that for any A we have

Y v(rank(p)) deg(p in A(A)) < |P. (5.1)

peA
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For chains of Type 1 this is trivial. For chains of Type 2 the left side of
(5:1) is not greater than.:.

(@=1) Y v(rank(p))+v Y w(rank(p))

peA peEA
deg p<a-—1 deg p=a
=(a—1) ), vaank(p)+(>~a+1) Y viank(p))
€A €
? delg’ pl;a

<(@-DP|+(v—a+1) Y m
deppma

(-1 |Pl+(v—a+1)am
sa|P|,

by (2.2). So (5.1) holds for any A.
Next let x be the characteristic function defined by x(w, W) is 1 1f
w e W but 0 otherwise. Then clearly we have

deg(p;in A(A))= ¥ x(p, F).
1=<j=svp
Also for any F< P we have
c|lFl= ¥ Y v@ank(p))x(p, F).

Aelist peA

It now follows that

c X IEl= Y X vank(p)) Y. x(p,F)

1=sj=<v A€list peA 1<j=<vp
= 2 X v(rank(p)) deg(p in A(A))
Aelist peA
< Y al|Pl=calP)| (5.2)

A elist

and Theorem 2.5 is proved. O

PrOOF OF THEOREM 2.6 Let Fy, ..., F, satisfying (2.1) be given. For any
rrpximal chain A let A(A) be as defined in the last proof. Since I' is now
directed we modify A(A) to get a bipartite graph A’(A). For 1<j<u, if
there is an edge (p;, F;) in 4, we remove the one with i as small as possible
from A. Thus if R is the set of removed edges then |R|<w. Finally, if
R# & we choose exactly one edge (p, F, 7)€ R with i as small as possible
and replace it. The result is A’. Notice that A’ is a subgraph of A obtained
by deleting at most v—1 edges.

— - —
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We claim that deg(p; in A’(A))<a for all A and O0<<i=<h. If true we can
bound the sum in (5.1) as follows:

Z v(rank(p)) deg(pin A)<m(v—1)+ Z v(rank(p)) deg(p in A")

peA peA

<m(v—1)+a ), v(rank(p))

=m(v—1)+a|P|. 5.3

The term m(v—1) above arises because an edge (p, F) in A\ A’ contri-
butes v(rank(p))<m to the sum, and there are not more than v —1 such
edges. Using (5.3) in (5.2) instead of (5.1) we get the right-hand side
inequality of Theorem 2.6. The left-hand side is trivial, so it remains to
establish our claim that deg(pin A')<a.

Suppose therefore that there is a k with deg(p, in A")=a + 1. Then by
definition of « there are r, s such that (p., F,), (o, F.)€A’ and (r,5)e
E(I). In turn, by definition of R, there exist (p;, F,), (p;, F;) € R. Recall
that we replaced one edge, e say, of R. If e=(p,, F,) then k=i and
e+ (p., F,) so j <k, contradicting the definition of e. Hence e# (p, F,) and
i < k. We now have (r, s) e E(I), p; € F,, px € F, and p; <p,. This contradicts
(2.1), establishes our claim, and ends the proof of the inequality of
Theorem 2.6.

Finally we give an example to show that the upper bound can be
attained. Let I" be the complete directed transitive graph so (i, j) e E(I') if
and only if 1<<i<j=v. Let P be a KLYM poset. Choose i with v(i)=m.
Put F,={peP:rank(p)=i}, F,=...=F,_;=ranki of P, and F,=
{p € P: rank(p) <i}. Then }, |F|=|P|+ m(v—1) as desired. [J

PROOF OF THEOREM 2.2 Put P=2" in Theorems 2.6 and 2.7. O

6. To find A(n) when I is undirected

Proor oF THEOREM 2.1 This proof is constructed for the various cases as
follows:

CaseJ=1 Let%,,..., %, satisfy J=1. This means that if (i, j)e E(I)
and Xe %, and Ye% then XNY# . Put x,=27"|F| for 1<is<wo.
Then clearly (4.1) holds. Also (4.2) holds, for if x;+x;>1 there is an
X <N such that Xe %, and N\ Xe %, Hence ¥ x; <a®(I') or in other
words 27"(| %] +. . . +|F D<= a™(D).

To show that this is best possible we must give an example. For use
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here and elsewhere put

@i,,'={XCN:ie){,j¢X} for 1=ij<n;
thus
90={XcN:1eX} and %,,={XcN:1¢X)}.

As shown in Lemma 4.1 we can choose x; €{0,3, 1} with ¥ x, = a®d(I).
Then for 1<i=<v we let &, be D, %10, 2" accordingly as x; is 0,1, 1. This
example completes the proof of case J=1.

Case J=U This follows from case J =] by replacing each set X by its
complement N\ X.

We will need the fundamental result

LemmaA 6.1 (Seymour [14]) «/]9|+~/|incomp Fl=sJ(2m).

Here and elsewhere
incomp % ={Y = N: both X¢ Y and Y# X for all X e #}.

Note that we use < in the sense that X< Y allows X=Y.

Case J=IU Let &,,..., %, satisfy J=1IU. If (i, )e E(I') then F; =
{N\X: Xe %}<incomp %, so \/|%|+~/|9‘,?]=\/|.%|+~/|9}[sx/2". We put
x,=v(2"|%]|) for 1<i<v. Then (4.1), (4.2) hold so ¥ x?<a®(A) or
27 Y |F|=a®).

For our example let & = 1.2, 50 F is clearly TU. We choose x<{0,1 1}
with ¥ x?=a®(I'). Then for 1<i<uv we let %, be &, F, 2" according as
X; is 0,3, 1. This example completes the proof of the case J=IU.

Case #e€J We always have a(l")<A(n). Given X< N let A be the
set of vertices i such that X € %, Because # € J this set A is independent
so |A|s (). It follows immediately that 27" ¥ |%|<a(I"). Notice that
we did not use the structure of 2", so if 2" was replaced by any set B we
would have max . |%#|=|B| a(I).

Cases J=C,IC, UC,TUC These follow from Theorem 2.5 with P =2"
because then (2.2) holds for n sufficiently large. [J]

7. Two examples

Let a be a real number in 0<q <i. Let N= {1, ..., n} be partitioned into
N=MU...UM,. For 1si<k let m;=|M;| and do the following.
Choose any ordering <; of the set of all subsets of M, such that Z,
Z'eM, and |Z|<|Z'| imply Z<,Z". Let &; be the first |a2™ | subsets of
M, in this ordering. Let % be complementary to A, so b =
{M\Z:Zest}. Let B, be the remaining subsets of M, so %, =
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{Z<=M;: Z¢ o, U %} and | B~ (1—2a)2™. Notice carefully that <, B;, 6;
are pairwise disjoint. Moreover if Xeof;, YeB;, and Ze%; then
YNZ#D, XUY#N, Y&EX, Z&Y and X#Y#Z.
Next we define
FV={XcN: XN M, e, for at least one i},
FO={Z=N:ZNM, e, UB, for all i},
$={Y<N; YNM,eB, for all i}.

Clearly if Xe F™ and Ye ¥ then XNY# &, X¢ Y and X# Y. Using
the fact that m;+...+m, =n we obtain

9= [I |®l~2"(1-2a)* =2"(1—a)*b,

1=isk
where
b=(1-2a)/(1-a)»* <1,
and .
|FP|~2"(1—-a),
%)

|FD|=2" ~|FP|~2"(1—(1-a)").
We choose a so that (1—a)*=1—(1—a)*=c say. Ther{ c=3B-V5)/2
because (1—a)* is the golden section (—1++/5)/2. We will use the fact
that as k, m;, ..., m all go to o we have a—0 and b— 1.
With a new value of a and 4 as above we put
F®={X < N:both XN M, € o, for at least one i
and XNM, %, for at least one i}.

Clearly if Xe %® and Ye ¥ then XNY# O, XUY#N, X¢Y, YEX
and X# Y. Now if ) . ,
FD={ZcN: Zec B, U%, for all i},

then |F@|=|FY)] so ) _

|FO| =2" —|FP| - |F9 +|9|~2"{1-2(1—a)* + (1 - 2a)"}.
We now choose a so that (1—a)* =% and then |F®|— 24 and |4|—
24 as k,m4, ..., my all —>oo,

"EXampi 7.1 Let v=2, F,=FD, F,=% and I be the edge (1,2). As

k,mq, ..., my all go to » we have 27" min{|%,|, | %[} = (3—-«/5)/?. IfIis
undirected then I# hold but if I' is directed then IC_7é hold.

ExampLe 7.2 Let v=2, F, =%, %,=% and I' be the edge- (1,2).
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Whether I' is directed or undirected IUC# hold and 2~ min{|%,|, | %[} -
1

4-

8. To find A(n), u(n) when I is an undirected edge
We have v =2, E(I')={(1, 2)} and write & for %, and ¥ for %,.

Tueorem 8.1  If I is an undirected edge then A(n)=1 forall T and n=1.

Proor We have a=a®=a®=1, and we apply Theorems 2.1 and
2.5 O3

THEOREM 8.2 When I is an undirected edge,

p(n)=3 for. T=1U,#,
pr)<p=0B-V5)2 for T=I#,U#,
um)=zp =% if J=C,
p(n)=% for = J=1U,C#,
pr)sp=3 if IUcJor C#cl,
B=3 for  J=IC,UC.

ReEMARK 8.1 The authors conjectured in [6] that u(n)=
max{3, 27" Sper(n)} for J=C. There is an earlier weaker conjecture of
Gronau [9].

PROOF OF THEOREM 8.2 This proof is again presented in terms of the
various cases:

Cases J=1,U,# By Theorem 8.1 we have |%|+|9|<2" so
27" min{|F|, |9}<2 so u(n)=<i. To see that we have w(n) =3 consider
examples where & and 4 are %,, or %10

Case J=C The example F=%,, and §=%,, shows that 1=<u(n).
Then the example % =% ={X < N:|X|=|4n]} shows that 27" Sper(n)<
p(n). Thus we have the left side of our result

max{z, 27" Sper(n)}< p(n) <i+27" Sper(n).

For the right-hand inequality let &f = #N%. Then & is an antichain so
|s¢|<Sper(n). Put ¥ =%\ o and ¢' = 9\ &, then % cincomp ', so by
Lemma 6.1 we have v|%|+V|9|<+v2". Hence 27 min{|/, |4} <% and
the inequality follows.

Case J=C# The example =9, , and =9, shows that < pu(n).
The reverse inequality follows from Lemma 6.1 as in the case J=C
because here # cincomp 4.
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Case J=TU We use the example ¥ =%=%,,. Then we note that
& cincomp{N\ X: X € %} and apply Lemma 6.1.
Case IUcJ By the case J=IU we have p(n)=<3. Then Example 7.2

shows that 2<p.
Case C#<J Here, by Lemma 3.2, we have p(1)<pn(2) sl. ..<u. By
the case J=C we have p <32. Then Example 7.2 shows that ;< pu.
Cases J=1C,UC We have p <3 by the case J=C and i<pu by

Example 7.2.
Cases J=1#,U# We will only deal with the case J=I# because the

case J=U+# will then follow by taking complements in N. In view of
Example 7.1 it is sufficient to show that p(n)<(3—/5)/2 for J=1#.
So suppose &, 4 are I#. Put

FV={XeF:AYeY, Y X}, FP=RA\FO,

YPV={Ye¥%:AXec F XY}, 4P =94\9".
Since condition # holds we have $FN$ = and

|F U9 =FP|+|F2| +|4V|+|€?.
It follows from the definitions that #® c incomp(4®) so
JIFP|+V|4P| < V2",
Next let # ={N\X: Xe FPUYY} so
|9€] = |F 0+ 9P,

Assume that Ze FN¥. Then Z =N\ X with either X F® or X e ¥™.
In the first case there is a Ye% with Y< X and hence.Zﬂ Y= Q,
contradicting I. In the second case Z N X = (J, again contradicting 1. This
shows that FN¥ = and by symmetry (FUYNH = . Let us define

real numbers
a;=|FV|2",  a=|F?)2, b =]9M2Y,  b=]9@)2"
Then since |FU %G U ¥|<2" the inequality p(n)=<(3-/5)/2 comes from

Lemma 8.1 Ower reals a4, a, by, b,=0 satisfying

Va,+vVby<1, 8.1

and
2a1+a,2+2b1+b2S1, (8.2)

we have -
max{min{a, + a,, b, + bo}} = 3—+5)/2,
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with equality if and only if, possibly by exchanging a and b,
0=b1<a,=(7-3V5)/2<a,=-2+5<b, = a;+a,=3-5)/2.

ProOF Let ay, a,, by, b, be chosen to maximize the minimum. Without
loss of generality we can assume a,+a,=b;+b,. Let x =min {a,, b,}.
Then by squaring twice we can verify that

«/(az—x)+~/(b2+x)$«/a2+~/b2.

We change variables by adding x to a,, b, and subtracting x from a,, b,.
Clearly (8.1), (8.2) still hold and two cases arise.

Case a,=0 Here (8.2) implies (8.1). So we want max{b, + b,} subject
to 4b;+3b,=<1. This max is clearly £ and 1<(3-V95)2.

Case b; =0 Here we want max{a; + a,} subject to va, ++/ (a;+ax)=<1
and 3a,+2a,<1. Put y=min{l —3a,—-2a,,a,} so y=0. We change
variables by adding y to a; and subtracting y from a,. Then we assume
3a;+2a, =1, for otherwise we are back in the case a, = 0. Eliminating a,
we now want max{(1- a,)/2} subject to

(1-3a)/2}+V{(1 - a))/2}<1.

Squaring this inequality twice and solving a quadratic equation shows that
the best value of a; is —2++/5 and Lemma 8.1 follows.

9. To find A(n), p(n) when I is a directed edge

We continue using the notation of Section 8 but now the edge (1,2) is
directed. We assume that CeJ because the other cases are covered by
our work on undirected I'.

THEOREM 9.1 When T is a directed edge

A(n) = {1 +27" Sper(n) if J= (?,
1 otherwise.
PrROOF Two cases must be considered:

Case J=C Since $N% is an antichain we have |%|+|¥|=
IFUY+|FNnG <2 +Sper(n). There is equality if %= {X<cN:
[37) <|X]} and ¥={XcN: |X]=<13n]}.

Case J#C We have 1<A\(n) by F=2" and ¥= . Ignoring the
condition C we see by Theorem 8.1 that A(my<1. O
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THEOREM 9.2 When I' is a directed edge -
w(n)=31+2"" Sper(n)} if n=2m and J=C,

w(n)=3 {1+2“2"‘( 2m )} if n=2m+1and J=C,

m—1
p(n)=3% if J=C#,
w=(3-5)/2 for  J=ICUC,
pn)<p=0C3-V5)2 for  J=IC#,UC#,
pm)ysp=1 for J=IUC, IUC#.

ain a number of cases must be considered:

PRg'le:e JA;gC When n is even the result follows from Theorem 9.1. The
authors conjectured the result for n odd but it seems to be much deeper
than n even. It is the main result in a paper of Dayk¥n [4.], v.vho doe.s not
celebrate birthdays but wishes his friend Paul everlasting life 1’n happiness.

Case J=IC If =%N9% then ¥ is an antichain. Le,t F jg\% and
@' =9\ % Then ¥, ¥ have properties I# so min{|%, |4} <2"(3—5)/2
by Theorem 8.2. It follows that . .

(n)<(3—+5)/2+27" Sper(n).

The result now follows by Example 7.1. The example %=
{XeN:7<|X]|} and ¥={XcN:6=<|X|{<7} with n=12 shows that

12)=0.3872>0.381 97 = (3—+5)/2. . .
‘L(Remaining cases These follow from Theorem 8.2 by deleting condi-

tion C.

10. To find u(n) when v>2 and I' is undirected

Let % be a set {H,,...,H,} of distinct finite sets H, so 25 is a
hypergraph. We recall that the fractional chromatic number x*(%) is
defined as

Xt =min{ T =) (10.1)
1<i=m
evaluated over all real numbers x(H,), ..., x(H,,) =0 such that
1=< Z x(H;) forall peH,U...UH,,. (10.2)
1si=m

peH;

We need x™* for

THeOREM 10.1 Let # be the set of all distinct, maximal by inclusion,



122 D. E. DAYKIN AND P. FRANKL

independent subsets of V(I'). If I' is undirected and T is #* then

w = 1/x*(3)
and
©—27" Sper(v)<sp(n)<pu.

PROOIT () Let &,,..., %, satisfy J=+#. In this part we show that if
8 =min{| %} then 8 <1/x*. If =0 we have nothing to do so we assume
8>0. Let M, ..., M,. be the distinct subsets of N. Put

Aj={k:1sk<y,Me%} for 1<j<2"

s0 A; is an independent subset of V(). Let Hy, ..., H, be the distinct
members of #. Choose any map w:{1,..., 2"}—{1,..., m} such that
A CH.f(j) for a.ll j- For 1si<m let » be the number of times that H,
occurs in the list H,qy, ..., H,o, and give to H; the weight x(H,) =
v,/8=0. l

Now pe H;U...UH,, = V(I') means that 1< p<wv, and for each such
p we have

167 'F|=6"1 Y 1

1<sj=2"
pPEA;
5 Y 1
1=j=2"
peH,q)
=6 Y [ X1
1<i=m | 1sj=<on
peH; H,=H,q
— -1
=67t Y u= Y x(H)
I=<i<m Isism
peH; peH;

So these weights satisfy the conditions (10.2). Hence
X*< Y x(H)=81 Y y=5"12"

l<i=m le<i=m
givi_x.xg r(n)<1/x* as required.

(ii) We her_e show that (1/x®)—27" Sper(v)<pu(n). Now %=
{Hl,:..,Hm} Is an antichain on V(I'), so m=<Sper(v). Choose any
solution x of the x*(%) problem, this means that

X*#)= Y x(H)
1=<i=<m

and (10.2) holds. For 1<i<m put
di = [2"x(H;)/x*],

[ “an
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SO
T d<) 2x(H)/x*=2"
Let %, ..., %, be pairwise disjoint sets of subsets of N with d; =|%;| for

1=<i=<m. Then put

F,= U 4 for 1sps=v.
l=<i=m
peH;

Then for each p, by using (10.2), we have
Fl= X d=-m+ X 2%(H)x*=-m+2x*,

1l=i=m 1=<i=m

peH, peH;
and the inequality for w(n) follows. As n — o we have 27" Sper(v) — 0
so p=1/x*.

Finally we must verify that &,,..., %, satisfy the condition #. So
suppose that (i, j) is an edge and XeF NF,. Since %,,..., %, are
disjoint, there is a unique k with Xe%,. Hence 4, <« # NF and this
implies that i, j € H;, contradicting the fact that H, is an independent set.
This completes the proof of Theorem 10.1. {1

ReMARK 10.1 An obvious candidate for an undirected I is the complete
graph K,. Even for this graph and J=C we do not know w(n). When
v = Sper(m) for some m an obvious example shows that 1/2™ =< u(n) for
m <n. The best example we could find for v =4 has w(n)=g;. For this
example let Q,, Q,, Qs, Q, be a partition of the 20 subsets of {1, .. . ., 6} of
cardinality 3 with each Q, having five of the subsets. Then put & =
{XeN: XN{1,...,6}cQ} for 1si=<4.

ProoF oF LEMMA 2.1 We must construct an example. Let I" be the
complete undirected graph on

2 —_
vz(m 1)23
m

vertices. Let Y3, ..., Y, be the v members of {Y<={2,3,...,2m}:|Y]|=
m}. For 1<i<ov let Y{={1,2,...,2m}\Y,;. Finally for n=2m and
1<i=<v put

F.={XcN:XNn{1,2,...,2m}is Y;or Y},

0 |%;|=2""2"*1 This example is IUC# and the lemma follows. O
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11. When I' is directed

Here and elsewhere
above F={XcN:3Ye % YcX},
below F={X<N:IYeF XY}

We need this result of great importance:
Lemma 11.1 (Kleitman [12]) |#| 2" <|above | [below %.

THEOREM 11.1 If v=3 and I is a directed circuit and J =C# then
Y VIFI<@2V2" and p(n)=1,

Proor The conditions are that if Xe %, and Ye %, then X¢Y and
X# Y. Subscripts are taken mod v. For 1<i<v let a;,=27" |above %],
b =27" |below %,|. Since J=C+# we have (above Z)N(below F, ) = &
$0 a; + b;,; <1. Consequently, summing over i, we get ) (a; +b;)=<v. Now
Lemma 11.1 says that

27 | F < @b <{(a; + b,)/2}%.
We take the square root and sum to get our first result. For the second

result, p(n) =1, notice that since Y (a,+b,) <v there is an i with a+b=<

1. This implies that a;b; <% so 27" |%|<3. Then examples to show the

theorem is best possible are, for n even %12, %21, %12, %51, ..., and for n
odd 95, 951, %23, %12, %215 - -

REMARK 11.1 We think that Theorem 11.1 holds for J=C if n is large.

TeeOREM 11.2 If I is the directed path (1, 2),(2,3) and J=C# then
*/|%!+~/(lé‘/’1|+I%IKG-)JZ"-

Proor  Without loss of generality we may assume %, =above ¥,;, F,=

below #; and %,c(2"\%)N(2"\%,). Put a=2" |Fil, b=2"" |,

€¢=27"|%;| then Lemma 11.1 says that b=(1-a)1-c). Hence if d=
(a+c)/2 then

Vb+J(a+c)<v2d)+V{(1—-a)1- oRsvQRd)+(1- d)y<3.

The example %, =4, ,, F2=%,,1, F3=%,, shows that the theorem is
best possible. [

ReEMARK 11.2 We now mention a result of a different kind. Let
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F1, Fa, F3, F4 be such that if 1<i<4 and XeF, YeF,,, ZeF.,,
then we do not have either X< Y < Z or Y < X, where suffices are taken
mod 4. Then Hilton [11] has proved that ¥ v|%,|<2(V2").

12. Further problems

The KLYM poset P is log convex if v(i— 1)v(i+ 1) <»(@)v(i) for 0<i<h.
Harper [10] proved that the direct product of such KL.YM posets forms a
KLLYM poset. It would be interesting to rework this paper with 2"
replaced by P" for such a P. If P was also a distributive lattice then so too
would be P". Lemmas 11.1 and 6.1 of Kleitman and Seymour which we
used hold in distributive lattices [1, 2].

The number (3—+/5)/2 does not appear to play a role in distributive
lattices. This can be seen as follows. First note that the proofs of the
upper bounds for the cases J=#,C, C# of Theorem 8.2 are valid for
distrisutive lattices. Then secondly consider the two examples below in
the (distributive) lattice of divisors of the integer 273"

ExampLE 12.1 Let F={2°3":0<s<t<r} and G={2°3":0<t<s<r}.
Then we get properties corresponding to IU# and < u(n).

ExampLE 12.2 Let F={2°3":0<s<3r<t<r} and G={2°3":0<t<}r
<s<r}. Then we get properties like IUC# and %< u(n).
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COMPLETION OF SPARSE PARTIAL LATIN SQUARES

David E. Daykin and Roland Higgkvist

AsBsTRACT Let P be a partial n X n latin square with 0,1,...,n—1
as symbols. (1) If n =16k and each row, column and symbol is used
at most (vk)/32 times then P can be completed. (2) Form a partial
mn X mn latin square Q from P as follows. Replace each cell ¢ of P
by an mXm array A(c). If ¢ is empty then A(c) is empty. If ¢ has
symbol x then exactly one cell of A(c) is filled from among mx, mx +
1,...,mx+m-—1 in any way. We conjecture that Q can be com-
pleted for m =2 and prove it for m =0 (mod 16).

1. Introduction

A partial n X n latin square P is an n X n array where some cells are filled
with one of the symbols 0,1,...,n—1 in such a way that no symbol
occurs twice in a row or column. If every cell is filled then P is a latin
square. If every empty cell can be filled so that the result is a latin square
then we say that P can be completed. Our main result, which we think to
be the first of its kind, is in the style of Evan’s problems.

ProrosrrioN 1 If P is a partial 16k X 16k latin square where each row,
column and symbol is used at most (Vk)/32 times then P can be completed.

The word sparse is in our title because (vk)/32 is small. We think that
the proposition would still be true if 16k and (vVk)/32 were replaced by k
and uk respectively, where u is some constant, maybe u=31. A famous
result of Ryser is

ProrosiTion 2 If P is a partial n X n latin square whose filled cells consist
of all the cells in an rx s rectangle then P can be completed if and only if
each symbol occurs at least r+s—n times in P,

This result trivially implies that if n =2d —1 (respectively n =2d) and P
has all its filled cells in the first d — 1 (respectively d) rows and the first d
columns then P can be completed. From this observation we easily got

ProrosirioN 3 Any partial nxn latin square P can be partitioned into
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