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Abstract: Let Tε, 0 ≤ ε ≤ 1/2, be the noise operator acting on functions on the boolean cube {0, 1}n.
Let f be a distribution on {0, 1}n and let q > 1. We prove tight Mrs. Gerber-type results for the
second Rényi entropy of Tε f which take into account the value of the qth Rényi entropy of f . For
a general function f on {0, 1}n we prove tight hypercontractive inequalities for the `2 norm of Tε f
which take into account the ratio between `q and `1 norms of f .
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1. Introduction

This paper considers the problem of quantifying the decrease in the `2 norm of a
function on the boolean cube when this function is acted on by the noise operator.

Given a noise parameter 0 ≤ ε ≤ 1/2, the noise operator Tε acts on functions on
the boolean cube as follows: for f : {0, 1}n → R, Tε f at a point x is the expected value
of f at y, where y is a random binary vector whose ith coordinate is xi with probability
1 − ε and 1 − xi with probability ε, independently for different coordinates. Namely,
(Tε f )(x) = ∑y∈{0,1}n ε|y−x|(1− ε)n−|y−x| f (y), where | · | denotes the Hamming distance.
We will write fε for Tε f , for brevity.

Note that fε is a convex combination of shifted copies of f . Hence, the noise operator

decreases norms. Recall that the `q norm of a function is given by ‖ f ‖q = (E | f |q)
1
q (the

expectations here and below are taken w.r.t. the uniform measure on {0, 1}n). The norms
{‖ f ‖q}q increase with q. An effective way to quantify the decrease of `q norm under noise
is given by the hypercontractive inequality [1–3] (see also, e.g., [4] for background), which
upperbounds the `q norm of the noisy version of a function by a smaller norm of the
original function.

‖ fε‖q ≤ ‖ f ‖1+(1−2ε)2(q−1). (1)

This inequality is essentially tight in the following sense. For any p < 1 + (q− 1)(1− 2ε)2

there exists a non-constant function f : {0, 1}n → R with ‖ fε‖q > ‖ f ‖p.
Entropy provides another example of a convex homogeneous functional on (nonnega-

tive) functions on the boolean cube. For a nonnegative function f let the entropy of f be
given by Ent( f ) = E f log2 f −E f log2 E f . The entropy of f is closely related to Shannon’s
entropy of the corresponding distribution f /Σ f on {0, 1}n, and similarly the entropy of
fε is related to Shannon’s entropy of the output of a binary symmetric channel with error
probability ε on input distributed according to f /Σ f (see below and, e.g., the discussion
in the introduction of [5]). The decrease in entropy (or, correspondingly, the increase in
Shannon’s entropy) after noise is quantified in the “Mrs. Gerber’s Lemma” [6]:

Ent( fε) ≤ nE f · ψ
(

Ent( f )
nE f

, ε

)
, (2)
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where ψ = ψ(x, ε) = H
(
(1− 2ε) · H−1(1− x) + ε

)
is an explicitly given function on

[0, 1] × [0, 1/2], which is increasing and strictly concave in its first argument for any
0 < ε < 1

2 . Here and below we write H(t) = t log2

(
1
t

)
+ (1− t) log2

(
1

1−t

)
for the binary

entropy function.
Equality holds iff f is a product function with equal marginals. That is, there exists

a function g : {0, 1} → R, such that for any x = (x1, ..., xn) ∈ {0, 1}n holds f (x) =

∏n
i=1 g(xi).

One has ψ(0, ε) = 0 and ∂ψ
∂x |x=0 = (1− 2ε)2. Hence ψ(x, ε) ≤ (1− 2ε)2 · x, with equal-

ity only at x = 0. Hence the inequality (2) has the following weaker linear approximation
version

Ent( fε) ≤ (1− 2ε)2 · Ent( f ), (3)

in which equality holds if and only if f is a constant function.
Rényi entropies. There is a well-known connection between `q norms of a nonnegative

function f and its entropy (see, e.g., [7]): Assume, as we may by homogeneity, that E f = 1.
Then Ent( f ) = limq→1

1
q−1 log2 || f ||

q
q. (The quantity Entq( f ) = 1

q−1 log2 || f ||
q
q is known as

the qth Rényi entropy of f ([8])). (Note that this notion is defined for all, not necessarily
nonnegative, functions on {0, 1}n.) The entropies {Entq( f )}q increase with q. Restating the
inequality (1) in terms of Rényi entropies gives

Entq( fε) ≤
(1− 2ε)2q

(1− 2ε)2(q− 1) + 1
· Ent1+(1−2ε)2(q−1)( f ).

Note that taking q → 1 in this inequality recovers only the (weaker) linear approxi-
mation version (3) of Mrs. Gerber’s inequality (2). This highlights an important difference
between inequalities (1) and (2). Mrs. Gerber’s lemma takes into account the distribution
of a function, specifically the ratio between its entropy and its `1 norm. When this ratio
is exponentially large in n, which typically holds in the information theory contexts in
which this inequality is applied, (2) is significantly stronger than (3). On the other hand,
hypercontractive inequalities seem to be typically applied in contexts in which the ratio
between different norms of the function is subexponential in n, and there are examples
of such functions for which (1) is essentially tight. With that, there are several recent

results [9–11] which show that (1) can be strengthened, if the ratio ‖ f ‖q
‖ f ‖1

, for some q > 1, is
exponentially large in n. In the framework of Rényi entropies, the possibility of a result
analogous to (2) for higher Rényi entropies was discussed in [12].

Our results. This paper proves a Mrs. Gerber type result for the second Rényi entropy,
and a hypercontractive inequality for the `2 norm of fε which take into account the ratio
between `q and `1 norms of f . We try to pattern the results below after (2).
We start with a Mrs. Gerber type inequality.

Proposition 1. Let q > 1, and let f be a nonnegative function on {0, 1}n such that E f = 1. Then

Ent2( fε)

n
≤ ψ2,q

(
Entq( f )

n
, ε

)
, (4)

where ψ2,q is an explicitly given function on [0, 1]× [0, 1/2], which is increasing and concave in
its first argument. The function ψ2,q is defined in Definition 1 below.

This inequality is essentially tight in the following sense. For any 0 < x < 1 and 0 < ε < 1
2 ,

and for any y < ψ2,q(x, ε) there exists a sufficiently large n and a nonnegative function f on

{0, 1}n with E f = 1, Entq( f )
n ≤ x and Ent2( fε)

n > y.

Let us make some comments about this result.

– The functions {ψ2,q}q are somewhat cumbersome to describe, and hence we relegate
their precise definition to Definition 1 below.
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– Inequality (4) upper bounds Ent2( fε) in terms of Entq( f ) for q > 1, and ε. Taking
q = 2 gives an upper bound on Ent2( fε) in terms of Ent2( f ) and ε, in analogy to (2).

– Recall that for a point x ∈ {0, 1}n and 0 ≤ r ≤ n, the Hamming sphere of radius r
around x is the set {y ∈ {0, 1}n : |y− x| = r}. As will be seen from the proof of
Proposition 1, (4) is essentially tight for a certain convex combination of the uniform
distribution on {0, 1}n and the characteristic function of a Hamming sphere of an
appropriate radius (depending on q, ε, and the required value of Entq( f )).

– In information theory one typically considers a slightly different notion of Rényi
entropies: For a probability distribution P on Ω, the qth Renyi entropy of P is given
by Hq(P) = − 1

q−1 log2(∑ω∈Ω Pq(ω)). To connect notions, if f is a nonnegative (non-

zero) function on {0, 1}n with expectation 1, then P = f
2n is a probability distribution,

and Entq( f ) = n − Hq(P). Furthermore, Entq( fε) = n − Hq(X⊕ Z), where X is a
random variable on {0, 1}n distributed accordinng to P and Z is an independent noise
vector corresponding to a binary symmetric channel with crossover probability ε.
Hence, (2) can be restated as

H(X⊕ Z) ≥ n · ϕ
(

H(X)

n
, ε

)
,

and Proposition 1 can be restated as

H2(X⊕ Z) ≥ n · ϕ2,q

(
Hq(X)

n
, ε

)
Here ϕ is an explicitly given function on [0, 1] × [0, 1/2], which is increasing and
convex in its first argument (ϕ(x, ε) = 1− ψ(1− x, ε)), and similarly for ϕ2,q.
Next, we describe our main result, a hypercontractive inequality for the `2 norm of fε

which takes into account the ratio between `q and `1 norms of f , and more specifically

Entq

(
f
‖ f ‖1

)
= q

q−1 log2

( ‖ f ‖q
‖ f ‖1

)
.

Theorem 1. Let q > 1, and let f be a non-zero function on {0, 1}n. Then

‖ fε‖2 ≤ ‖ f ‖κ , (5)

where κ = κ2,q

(
Entq

(
f
‖ f ‖1

)
n , ε

)
, and κ2,q is an explicitly given function on [0, 1]× [0, 1/2], which

is decreasing in its first argument and which satisfies κ2,q(0, ε) = 1 + (1− 2ε)2, for all 0 ≤ ε ≤ 1
2 .

The function κ2,q is defined in Definition 1 below.
This inequality is essentially tight in the following sense. For any 0 < x < 1 and 0 < ε < 1

2 ,
and for any y < κ2,q(x, ε) there exists a sufficiently large n and a function f on {0, 1}n with
Entq( f /‖ f ‖1)

n ≥ x and ‖ fε‖2 > ‖ f ‖y.

Some comments (see also Lemma 10 below).

– The precise definition of the functions {κ2,q}q will be given in Definition 1 below.
At this point let us just observe that since the sequence {Entq( f )}q increases with q,
we would expect the fact that Entq( f ) is large to become less significant as q increases.
This is expressed in the properties of the functions {κ2,q}q in the following manner: If
q ≥ 2 then for any 0 < ε < 1

2 the function κ2,q(x, ε) starts as a constant-
(
1 + (1− 2ε)2)

function up to some x = x(q, ε) > 0, and becomes strictly decreasing after that.

In other words x(q, ε) is the largest possible value of
Entq

(
f
‖ f ‖1

)
n for which Theorem 1

provides no new information compared to (1). For 1 < q < 2 there is a value
0 < ε(q) < 1

2 , such that for all ε ≤ ε(q) the function κ2,q(x, ε) is strictly decreasing (in
which case we say that x(q, ε) = 0). However, x(q, ε) > 0 for all ε > ε(q). The function
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ε(q) decreases with q (in particular, ε(q) = 0 for g ≥ 2). The function x(q, ε) increases
both in q and in ε.

– Notably, taking q→ 1 in Theorem 1 gives (see Corollary 1)

‖ fε‖2 ≤ ‖ f ‖κ ,

where κ = κ2,1

(
Ent
(

f
‖ f ‖1

)
/n, ε

)
= −

Ent
(

f
‖ f ‖1

)
/n

φε

(
1−Ent

(
f
‖ f ‖1

)
/n
) . The function κ2,1(x, ε) =

− x
φε(1−x) is strictly decreasing in x for any 0 < ε < 1

2 . It satisfies κ2,1(0, ε) =

limx→0 κ2,1(x, ε) = 1 + (1 − 2ε)2, for all 0 ≤ ε ≤ 1
2 . Hence, this is stronger than

(1) for any non-constant function f and for any 0 < ε < 1
2 , with the difference be-

tween the two inequalities becoming significant when Ent
(

f
‖ f ‖1

)
/n is bounded away

from 0.
– As will be seen from the proof of Theorem 1, (5) is essentially tight for a certain convex

combination of the uniform distribution on {0, 1}n and characteristic functions of one
or two Hamming spheres of appropriate radii (the number of the spheres and their
radii depend on q, ε, and the required value of Entq

(
f
‖ f ‖1

)
).

– Let f be a non-constant function and let 0 < ε < 1
2 be fixed. Consider the function

F(q) = Ff ,ε(q) = κ2,q

(
Entq

(
f
‖ f ‖1

)
n , ε

)
. It will be seen that there is a unique value 1 <

q( f , ε) ≤ 1 + (1− 2ε)2 of q for which F(q) = q. Furthermore, q( f , ε) = minq≥1 F(q).
Hence it provides the best possible value for κ in Theorem 1. With that, determining
q( f , ε) might in principle require knowledge of all the Renyi entropies Entq( f ), for 1 ≤
q ≤ 1 + (1− 2ε)2, while typically we are in possession of one of the “easier” Rényi
entropies, such as Ent( f ) or Ent2( f ).

1.1. Full Statements of Proposition 1 and Theorem 1

We now define the functions {ψ2,q}q in Proposition 1 and {κ2,q}q in Theorem 1, com-
pleting the statements of these claims. We start with introducing yet another function on
[0, 1] × [0, 1/2] which will play a key role in what follows (we remark that this func-
tion was studied in [9]). For 0 ≤ x ≤ 1 and 0 ≤ ε ≤ 1

2 , let σ = H−1(x) and let

y = y(x, ε) =
−ε2+ε

√
ε2+4(1−2ε)σ(1−σ)
2(1−2ε)

. Let

Φ(x, ε) =
1
2
·
(

x− 1 + σH
( y

σ

)
+ (1− σ)H

(
y

1− σ

)
+ 2y log2(ε) + (1− 2y) log2(1− ε)

)
.

The function Φ is nonpositive. It is increasing and concave in its first argument.
Additional relevant properties of Φ are listed in Lemma 3 below. For a fixed ε, it will be
convenient to write φε(x) = Φ

(
x, 2ε(1− ε)

)
, viewing φε as a univariate function on [0, 1].

Definition 1. Let 0 ≤ x ≤ 1 and 0 ≤ ε ≤ 1
2 .

• If φ′ε(1− x) < 1
q , let α0 = (φ′ε)

−1
(

1
q

)
. Define

ψ2,q(x, ε) = 2 ·
{

q−1
q · x +

(
φε(α0) +

1−α0
q

)
if φ′ε(1− x) < 1

q

φε(1− x) + x otherwise

• Let y = q−1
q · x + 1

q . Let q0 = 1 + (1− 2ε)2. If y ≥ 1
q0

, let α0 be determined by 1− α0 −
α0φε(α0)

1−α0
= y. If x = 0, define κ2,q(x, ε) = q0. Otherwise, define
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κ2,q(x, ε) =


q0 if y ≤ 1

q0

− x
φε(1−x) if y > 1

q0
and − x

φε(1−x) ≥ q
α0−1

φε(α0)
if y > 1

q0
and − x

φε(1−x) < q

We remark that it is not immediately obvious that the functions ψ2,q and κ2,q are
well-defined. This will be clarified in the proofs of Proposition 1 and Theorem 1.

We state explicitly some special cases of Theorem 1, which seem to be the most relevant
for applications. They describe the improvement over (1), given non-trivial information
about Ent( f ) and ‖ f ‖2.

Corollary 1.

1. Taking q→ 1 in Theorem 1 gives:

‖ fε‖2 ≤ ‖ f ‖κ , with κ = −
Ent
(

f
‖ f ‖1

)
/n

φε

(
1− Ent

(
f
‖ f ‖1

)
/n
) .

2. Taking q = 2 in Theorem 1 gives, for x =
Ent2

(
f
‖ f ‖1

)
n and q0 = 1 + (1− 2ε)2

‖ fε‖2 ≤ ‖ f ‖κ , with κ =

{
q0 if x+1

2 ≤
1
q0

α−1
φε(α)

otherwise

In the second case α is determined by 1− α− αφε(α)
1−α = x+1

2 .

We observe that both Proposition 1 and Theorem 1 are based on the following claim
([9], Corollary 3.2). This claim also explains the relevance of function Φ.

Theorem 2. Let 0 ≤ x ≤ 1. Let f be a function on {0, 1}n supported on a set of cardinality at
most 2xn. Then, for any 0 ≤ ε ≤ 1

2 holds

〈 fε, f 〉 ≤ 2(2Φ(x,ε)+1−x)·n · ‖ f ‖2
2,

Moreover, this is tight, up to a polynomial in n factor, if f is the characteristic function of a Hamming
sphere of radius H−1(x) · n.

1.2. Applications

We describe some applications of the results above, related mainly to coding theory.
We start with providing some relevant context.

Coding theory. A binary error-correcting code C of length n and minimal distance d is a
subset of {0, 1}n in which the distance between any two distinct points is at least d. Let A(n, d)
be the maximal size of such a code. A well-known open problem in coding theory is to de-
termine, given 0 < δ < 1

2 , the asymptotic maximal rate R(δ) = lim supn→∞
1
n log2 A(n, bδnc)

of a code with relative distance δ. The best known lower bound on R(δ) is the Gilbert-
Varshamov bound R(δ) ≥ 1− H(δ) [13]. The best known upper bounds on R(δ) were
obtained in [14] using the linear programming relaxation, constructed in [15], of the com-
binatorial problem of bounding A(n, d). Let ALP(n, d) be the value of the appropriate
linear program of [15] and let RLP(δ) = lim supn→∞

1
n log2 ALP(n, bδnc). By construction,

ALP(n, d) ≥ A(n, d) for all n and d and hence RLP(δ) ≥ R(δ). The first JPL bound of [14] is
R(δ) ≤ RLP(δ) ≤ H

(
1/2−

√
δ(1− δ)

)
. This bound is the best known for a subrange of

values of δ. The best known bound is the second JPL bound of [14]. It is better than the first
bound for relatively small values of δ. However, it is more complicated to state explicitly and
we omit it here. The second JPL bound is strictly larger than the Gilbert-Varshamov bound
for all 0 < δ < 1

2 , and hence R(δ) is unknown for all these values of δ.



Entropy 2022, 24, 1376 6 of 27

The value of RLP(δ) is also unknown, for all 0 < δ < 1
2 . Clearly RLP(δ) ≥ R(δ) ≥

1− H(δ). It was conjectured in [14] that RLP(δ) lies strictly between the second JPL bound
and the Gilbert-Varshamov bound. On the other hand, there is a convincing numeric
evidence [16] that RLP(δ) in fact coincides with the second JPL bound. A lower bound

RLP(δ) ≥
1−H(δ)+H

(
1/2−
√

δ(1−δ)
)

2 was shown in [17] (note that the RHS here is the arith-
metic average of the Gilbert-Varshamov bound and the first JPL bound). It was improved,
for a subrange of δ, in [18].

A different approach to obtain upper bounds on the cardinality of binary codes was
presented in [19]. For a subset D ⊆ {0, 1}n, let MD be the adjacency matrix of the subgraph
of the discrete cube induced by the vertices of D. Let λ(D) be the maximal eigenvalue of
MD. The following claim was proved in [19] for binary linear codes (and extended in [18]
to general binary codes): Let D be subset of {0, 1}n with λ(D) ≥ n− 2d + 1. Let C be a
code of length n and minimal distance d. Then |C| . |D| (here we use the approximate
inequality sign to indicate that the inequality holds up to lower order terms). Choosing
for D the Hamming balls of different radii with their corresponding parameters leads to a
simple proof of the first JPL bound on R(δ). Ref. [19] posed the natural problem of finding
subsets of {0, 1}n with the largest possible eigenvalue for their cardinality. This question
was answered in [20], where is was shown that Hamming balls of radius r = ρn, 0 < ρ < 1

2
have essentially the largest eigenvalues for their cardinality. This seems to indicate that at
least the straightforward version of the approach of [19], as described above, does not lead
to an improvement of the first JPL bound. The claim in [20] was derived from a logarithmic
Sobolev inequality for highly concentrated functions on the boolean cube. We continue with
a brief description of relevant notions.

Logarithmic Sobolev inequalities. Viewing both sides of (1) as functions of ε, and writing
L(ε) for the LHS and R(ε) for the RHS, we have L(0) = R(0) = ‖ f ‖2, and L(ε) ≤ R(ε)
for 0 ≤ ε ≤ 1

2 . Since both L and R are differentiable in ε this implies L′(0) ≤ R′(0). This
inequality is the logarithmic Sobolev inequality ([3]) for the Hamming cube. We proceed
to describe it in more detail. Recall that the Dirichlet form E( f , g) for functions f and g

on the Hamming cube is defined by E( f , g) = Ex ∑y∼x

(
f (x)− f (y)

)(
g(x)− g(y)

)
. Here

y ∼ x means that x and y differ in precisely one coordinate. The logarithmic Sobolev
inequality then states that E( f , f ) ≥ 2 ln 2 · Ent

(
f 2). This inequality describes the behavior

of the norm on the RHS of the hypercontractive inequality (1) as ε → 0 and, as such,
can be viewed as a special case of (1). In point of fact, it was introduced in [3] as a way
to prove (1) by (roughly speaking) integrating this inequality over the noise parameter
(using the semigroup property of noise operators). Following [3], logarithmic Sobolev
inequalities were shown to hold in many spaces of interest (see [21] for discussion and for
many applications of these inequalities).

The logarithmic Sobolev inequality for highly concentrated functions in [20] (we will
state this inequality explicitly in the discussion following Corollary 2 below) improves over
the inequality E( f , f ) ≥ 2 ln 2 · Ent

(
f 2) similarly to the improvement to (1) provided by

Theorem 1. However, deducing a tight hypercontractive inequality, such as Theorem 1,
from the inequality in [20] by integration (following the approach of [3]) seems to be more
challenging. Roughly speaking, the problem lies in the fact that the concentration of f might
decrease very quickly under noise. With that, a family of logarithmic Sobolev inequalities,
generalizing that of [20] was proved in [10]. Integrating these inequalities over noise leads
to a family of hypercontractive inequalities which improve over (1) for highly concentrated
functions and which are essentially tight in the vicinity of ε = 0. These inequalities were
used in [10] to prove a version of the uncertainty principle on {0, 1}n.

An uncertainty principle on {0, 1}n. We recall some basic notions in Fourier analysis
on the Hamming cube (see [4]). For α ∈ {0, 1}n, define the Walsh-Fourier character Wα

on {0, 1}n by setting Wα(y) = (−1)∑ αiyi , for all y ∈ {0, 1}n. The weight of the character
Wα is the Hamming weight |α| of α. The characters {Wα}α∈{0,1}n form an orthonormal
basis in the space of real-valued functions on {0, 1}n, under the inner product 〈 f , g〉 =
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1
2n ∑x∈{0,1}n f (x)g(x). The expansion f = ∑α∈{0,1}n f̂ (α)Wα defines the Fourier transform
f̂ of f . We also have the Parseval identity, ‖ f ‖2

2 = ∑α∈{0,1}n f̂ 2(α).
Uncertainty principle asserts that a function and its Fourier transform cannot be

simultaneously narrowly concentrated. A well-known way (see, e.g., [22]) to state this for
the Hamming cube is as follows. If f is a non-zero function on {0, 1}n then |supp( f )| ≥

2n

|supp( f̂ )|
. In [10], (see also the discussion following Theorem 1.10 in [9]) a different way

to formalize this statement for the Hamming cube was presented. If f is a function on

{0, 1}n with
Ent2

(
f
‖ f ‖1

)
n ≥ 1− H(ρ), then its Fourier transform f̂ cannot attain its `2 norm

in a Hamming ball of radius much smaller than
(

1
2 −

√
ρ(1− ρ)

)
· n. This result was then

used to establish some properties of binary linear codes.
Our results. We now pass to presenting our results which are relevant to the topics

above. We first remark that the idea of using hypercontractivity to study binary codes was
discussed already in [23]. In [24], the hypercontractive inequality (1) was used to obtain
bounds on the distance components and other parameters of binary codes. We observe (a
similar observation was made in [9]) that these bounds can be strengthened by replacing (1)
by (stronger) inequalities of Theorem 1. We do not go into details.

Next, we consider some implications of Theorem 1, focussing on the behavior of the
norm κ = κ2,2 for values of the noise parameter ε in the vicinity of 0. Clearly, for any
0 ≤ x ≤ 1 the function κ2,2(x, ε) is 2 at ε = 0. We prove the following technical claim.

Lemma 1. Assume 0 < x < 1. Let κ(ε) = κ2,2(x, ε).

1.

κ′(0) =
4

ln 2
·

(
2
√

H−1(1− x)(1− H−1(1− x))− 1
)

x
.

2. Let ε ∼ 0 express the fact that ε is a sufficiently small absolute constant. Then for ε ∼ 0 holds
|κ′(ε)− κ′(0)| ≤ O(ε), where the asymptotic notation hides absolute constants which may
depend on x.

We use the first part of this claim to rederive a slightly weaker (but sufficient for
applications, see the dicussion following Corollary 4) version of the logarithmic Sobolev
inequality from [20].

Corollary 2. For any function f on {0, 1}n holds

E( f , f ) ≥ `

Ent2

(
f
‖ f ‖1

)
n

 · Ent
(

f 2
)

,

where `(x) = 2 ·
1−2

√
H−1(1−x)(1−H−1(1−x))

x is a convex and increasing function on [0, 1], taking
[0, 1] onto [2 ln 2, 2].

We remark that in [20] (see also Theorem 6 in [10]) a somewhat stronger logarith-

mic Sobolev inequality E( f , f ) ≥ `

 Ent
(

f 2

‖ f ‖22

)
n

 · Ent
(

f 2) was shown using a different

approach. (It seems that it might be possible to recover this stronger inequality by differen-
tiating a corresponding hypercontractive inequality at zero, if one considers a more general
version of Theorem 1 which takes into account the ratio between `q and `p norms of f ,
for q > p, and in this case taking both q and p to be very close to 2. We omit the details.)

Next, we use the second part of Lemma 1 to rederive the uncertainty principle
from [10].
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Corollary 3. Let f be a non-zero function on {0, 1}n such that
Ent2

(
f
‖ f ‖1

)
n = 1− H(ρ), for some

0 ≤ ρ < 1. Let 0 ≤ µ < 1
2 −

√
ρ(1− ρ). Then

∑
|α|≤µn

f̂ 2(α) ≤ 2−cn ·∑
α

f̂ 2(α),

where c is an absolute constant depending on ρ and µ.

Let us remark that it seems helpful to have an explicit hypercontractive inequality
(given by Theorem 1) from which both Corollaries 2 and 3 can be derived as special cases.

The following two results are simple consequences of Corollaries 2 and 3, respectively.
Recall that for a subset D ⊆ {0, 1}n, λ(D) is the maximal eigenvalue of the adjacency
matrix of the subgraph of the discrete cube induced by the vertices of D. Recall also that
RLP(δ) denotes the best possible upper bound on the asymptotic maximal rate R(δ) of a
code with relative distance δ which is possible to obtain using the linear programming
approach of [15].

Corollary 4.

• Let D be a subset of {0, 1}n of cardinality |D| = 2H(ρ)n, for some 0 ≤ ρ ≤ 1. Then

λ(D) ≤ 2
√

ρ(1− ρ) · n.

This is almost tight if D is a Hamming ball of exponentially small cardinality.
• For any 0 ≤ δ ≤ 1

2 holds

RLP(δ) ≥
1− H(δ) + H

(
1/2−

√
δ(1− δ)

)
2

.

Some comments.

– As discussed above, the first of the these claims answers the question of [19] and
shows that a certain approach to bound binary codes does not lead to an improvement
of the first JPL bound. The second claim shows that the best possible bound obtainable
via the linear programming approach of [15] is not better than the arithmetic average
of the Gilbert-Varshamov bound and the first JPL bound. Observe that the first claim
is a consequence of the logarithmic Sobolev inequality in Corollary 2, and hence of the
behavior of the norm κ2,2 in Theorem 1 as ε→ 0. The second claim is a consequence of
the uncertainty principle in Corollary 3, and hence of the behavior of the norm κ2,2 in
Theorem 1 as ε ∼ 0. We find these connections between notions to be rather intriguing.

– As we have mentioned, the first of the claims recovers a result of [20], where it was
also derived from the appropriate logarithmic Sobolev inequality. (Apart from this
claim being a simple corollary of Theorem 1, an additional reason for stating it here is
that it has only appeared in the unpublished arXiv preprint [20].) The second claim of
recovers a result of [17].

Finally we present a result of a somewhat different nature. The question of the maximal
possible ratio ‖ f ‖2

‖ f ‖1
for a polynomial f of degree s on {0, 1}n is considered in analysis [25,26]

in connection with a conjecture of Pelczynski. The following claim is a simple consequence
of Corollary 2.

Corollary 5. Let 0 ≤ s ≤ n
2 and let f be a polynomial of degree s on {0, 1}n (that is, f a restriction

of a degree s polynomial on Rn to {0, 1}n). Then, writing σ for s
n ,

1
n

log2

(
‖ f ‖2

‖ f ‖1

)
≤

1− H
(

1
2 −

√
σ(1− σ)

)
2

.
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We remark that this improves the estimate of [25] for 0.3.. ≤ s
n < 1

2 .

1.3. Related Work

In [10], it was shown that if ‖ f ‖p
‖ f ‖1

≥ 2ρn, for some p ≥ 1 and ρ ≥ 0, then ‖ f ‖p ≥
‖ fε‖1+ p−1

(1−2ε)2
+∆(p,ρ,ε)

, where ∆(p, ρ, ε) > 0 for all p > 1, ε, ρ > 0 (cf. with (1), which can be

restated as ‖ f ‖p ≥ ‖ fε‖1+ p−1
(1−2ε)2

, for p = 1 + (1− 2ε)2(q− 1)). The function ∆(p, ρ, ε) is

“semi-explicit”, in the following sense: it is an explicit function of the (unique) solution of a
certain explicit differential equation.

In [11], it was shown, using a different approach, that (restating the result in the
notation of this paper) ‖ fε‖2 ≤ ‖ f ‖q, where q is determined by Ff ,ε(q) = q (in the notation
of the last comment above to Theorem 1). As we have observed, this is the best possible
value for κ in Theorem 1, but it might not be easy to determine explicitly in practice
(compare with Corollary 1).

In [27], Mrs. Gerber type inequalities for Rényi divergence and arbitrary distributions
on Polish spaces were proved, using a different approach. The results in [27] apply in
higher generality, but they seem to be somewhat less explicit than these in Proposition 1.

This paper is organized as follows. We prove Proposition 1 in Section 2 and Theorem 1
in Section 3. We prove the remaining claims, including some technical lemmas and claims
made above in the comments to the main results, in Section 4.

2. Proof of Proposition 1

We first prove (4) and then show it to be tight. We prove (4) in two steps, using
Theorem 2 to reduce it to a claim about properties of the function φε, and then proving
that claim.

We start with the first step. It follows closely the proof of Theorem 1.8 in [9], and hence
will be presented rather briefly, and not in a self-contained manner. Let f be a function on
{0, 1}n, for which we want to show (4). Recall that, by assumption, E f = 1. This means
that ‖ f ‖∞ ≤ 2n, and that the points at which f < 2−n, say, contribute little to both sides
ot (4), so we may ignore them for the sake of the discussion (that is, we may and will
assume that f vanishes on these points). All the remaining points can be partitioned into
O(n) level sets A1, ...Ar such that f varies by a factor of 2 at most in each level set. Let
αi =

1
n log2(|Ai|), and let νi =

1
n log2(vi), where vi is the minimal value of f on Ai. Then,

as shown in the proof of Theorem 1.8 in [9], up to an additive error term of O
(

log(n)
n

)
,

we have,
Ent2( fε)

n
=

1
n

log2 ‖ fε‖2
2 ≤ 2 · max

1≤i≤r

{
φε(αi) + νi

}
.

The negligible error here contributes towards a negligible error in (4), which can then be
removed by a tensorization argument, so we will ignore it from now on.

Let N = 1
n log2

(
‖ f ‖q

)
. Note that N = q−1

q ·
Entq( f )

n . Hence, in particular, N ≤ q−1
q .

Note also that for any 1 ≤ i ≤ r holds αi + νi ≤ 1 (since E f = 1) and αi−1
q + νi ≤ N

(since |Ai |
2n 2qνin ≤ 1

2n ∑x∈Ai
f q(x) ≤ ‖ f ‖q

q). We also have 0 ≤ αi ≤ 1 and −1 ≤ νi ≤ 1. This
discussion leads to the definition of the following two subsets of R2, which will play an
important role in the proof of Theorem 1 as well. (We remark that the relevance of the
set Ω in the following definition is not immediately obvious. It will be made clear in the
following arguments.)

Definition 2. Let q > 1 and 0 < N ≤ q−1
q . Let Ω0 ⊆ R2 be defined by

Ω0 =

{
(α, ν) : 0 ≤ α ≤ 1, − 1 ≤ ν ≤ 1, α + ν ≤ 1,

α− 1
q

+ ν ≤ N
}

.



Entropy 2022, 24, 1376 10 of 27

Let Ω ⊆ Ω0 be the set of all pairs (α, ν) ∈ Ω0 with ν ≥ 0.

By the preceding discussion, (4) will follow from the following claim.

Lemma 2. For all 0 ≤ ε ≤ 1
2 holds

max
(α,ν)∈Ω0

{
φε(α) + ν

}
=

1
2
· ψ2,q

(
qN

q− 1
, ε

)
,

where ψ2,q is defined in Definition 1.

Before proving Lemma 2, we collect the relevant properties of the function φε in the
following lemma.

Lemma 3. Let 0 < ε < 1
2 . Let q0 = q0(ε) = 1 + (1− 2ε)2. The function φε has the follow-

ing properties.

1. φε(α) is strictly concave and increasing from φε(0) = −
log2

(
4

q0

)
2 to 0 on 0 ≤ α ≤ 1.

2. φ′ε(0) = 1, φ′ε(1) =
1
q0

.

3. α−1
φε(α)

is strictly increasing in α, going up to q0, as α→ 1.

4. The function g(α) = 1− α− α
1−α · φε(α) is strictly decreasing on [0, 1]. Moreover, g(0) = 1

and g(1) = 1
q0

.

This lemma will be proved in Section 4. For now we assume its correctness, and pro-
ceed with the proof of Lemma 2.

Proof. Our first observation is that the maximum of φε(α) + ν on Ω0 is located in Ω, since
for any point (α, ν) ∈ Ω0 with ν < 0, the point (α, 0) is in Ω. So we may and will replace
Ω0 with Ω in the following argument.

Since φε is increasing, any local maximum of φε(α) + ν is located on the upper bound-
ary of Ω, that is on the piecewise linear curve which starts as the straight line α

q + ν = N + 1
q ,

for 0 ≤ α ≤ 1− qN
q−1 and continues as the straight line α + ν = 1 for 1− qN

q−1 ≤ α ≤ 1.
Note that, since φ′ε < 1 for α > 0, the function φε(α) + ν decreases (as a function

of α) on the line α + ν = 1 for 1− qN
q−1 ≤ α ≤ 1. Next, let h(α) = φε(α)− α

q +
(

N + 1
q

)
.

The function h describes the restriction of φε(α) + ν to the line α
q + ν = N + 1

q , and we

are interested on the maximum of h on the interval I =
{

0 ≤ α ≤ 1− qN
q−1

}
. We have

h′(α) = φ′ε(α) − 1
q . By Lemma 3, the function h is concave, and hence there are two

possible cases:

• φ′ε

(
1− qN

q−1

)
≥ 1

q . In this case h is increasing on I and we get

max
(α,ν)∈Ω

{
φε(α) + ν

}
= max

α∈I
{h(α)} = h

(
1− qN

q− 1

)
=

φε

(
1− qN

q− 1

)
+

qN
q− 1

=
1
2
· ψ2,q

(
qN

q− 1
, ε

)
.

The last equality follows from the definition of ψ2,q in this case.
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• φ′ε

(
1− qN

q−1

)
< 1

q . Note that, by Lemma 3, 1 = φ′ε(0) > 1
q . Hence, in this case the

maximum of h on I is located at the unique zero of its derivative, that is at the point
α0 such that φ′ε(α0) =

1
q . Using the definition of ψ2,q in this case, we get

max
(α,ν)∈Ω

{
φε(α) + ν

}
= h(α0) = N +

(
φε(α0) +

1− α0

q

)
=

1
2
· ψ2,q

(
qN

q− 1
, ε

)
.

This concludes the proof of (4). The fact that ψ2,q(x, ε) is strictly increasing and concave
in its first argument is an easy implication of Lemma 3.

We pass to showing the tightness of (4). Let 0 < ε < 1
2 and 0 < x < 1. Set N = q−1

q · x.
Let Ω be the domain defined in Definition 2, and let (α∗, ν∗) be the maximum point of
φε(α) + ν on Ω (note that the discussion above determines this point uniquely). We proceed
to define the function f . Let n be sufficiently large. For y ∈ {0, 1}n, let |y| denotes the
Hamming weight of y, that is the number of 1-coordinates in y. Let r = bH−1(α∗) · nc. Let
S = {y ∈ {0, 1}n, |y| = r} be the Hamming sphere around zero of radius r in {0, 1}n. Now
there are two cases to consider.

• If φ′ε(1 − x) < 1
q , then by the discussion above, the point (α∗, ν∗) lies on the line

α
q + ν = N + 1

q , but not on the line α + ν = 1. Observe that 2α∗n−o(n) ≤ |S| ≤ 2α∗n

(the first estimate follows from the Stirling formula, for the second estimate see,
e.g., Theorem 1.4.5. in [28]). As the first attempt, let g = 2ν∗n · 1S. Then N − o(n) ≤
α∗−1

q + ν∗ − o(n) ≤ 1
n log2 ‖g‖q ≤ α∗−1

q + ν∗ = N. That is, x − on(1) ≤
Entq(g)

n ≤ x.

However, E g is exponentially small. To correct that, we define f to be v = 2(ν
∗−δ)·n

on S, and 2n−|S|v
2n−|S| on the complement of S. Then E f = 1. We choose δ to be as small

as possible, while ensuring that Entq( f )
n ≤ x. Since the contribution of the constant-1

function to ‖ f ‖q is exponentially small w.r.t. ‖ f ‖q, we can choose δ = on(1). We now

have E f = 1, Entq( f )
n ≤ x, and

Ent2( fε)

n
=

1
n

log2 ‖ fε‖2
2 =

1
n

log2

〈
f2ε(1−ε), f

〉
≥

2 · (φε(α
∗) + ν∗)− on(1) ≥ ψ2,q(x, ε)− on(1).

Here the second equality follows from the semigroup property of the noise operator:
Tε ◦ Tε = T2ε(1−ε). The first inequality follows from the tightness part of Theorem 2
and the definition of φε. The second inequality follows from Lemma 2.
The tightness of (4) in this case now follows, taking into account the fact that ψ2,q is
strictly increasing.

• If φ′ε(1− x) ≥ 1
q , the point (α∗, ν∗) lies on the intersection of the lines α

q + ν = N + 1
q ,

and α + ν = 1. Hence the function g = 2ν∗n · 1S has both x − on(1) ≤
Entq(g)

n ≤ x,
and 1− on(1) ≤ E g ≤ 1. It is easy to see that g can be corrected as in the preceding
case, by decreasing it slightly on S and adding a constant component, to obtain a
function f with expectation 1 and Entq( f ) ≤ x, and with Ent2( fε)

n ≥ ψ2,q(x, ε)− on(1),
proving the tightness of (4) in this case as well. We omit the details.

This completes the proof of Proposition 1. �

3. Proof of Theorem 1

The high-level outline of the argument in this proof is similar to that of Proposition 1.
We start with proving (5), doing this in two steps. In the first step Theorem 2 is used
to reduce (5) to a claim about properties of the function φε. That claim is proved in the
second step.
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We will give only a brief description of the first step since, similarly to the first
step in the proof of Proposition 1, it follows closely the proof of Theorem 1.8 in [9]. Let
f be a function on {0, 1}n, for which we may and will assume that f ≥ 2−n and that
E f = ‖ f ‖1 = 1. There are O(n) real numbers 0 ≤ α1, ..., αr ≤ 1 and −1 ≤ ν1, ..., νr ≤ 1,
such that, up to a negligible error, which may be removed by tensorization, we have

1
n

log2 ‖ fε‖2 ≤ max
1≤i≤r

{
φε(αi) + νi

}
and

1
n

log2 ‖ f ‖q = max
1≤i≤r

{αi − 1
q

+ νi

}
.

Hence (5) reduces to claim (6) in the following proposition.

Proposition 2. Let q > 1 and 0 ≤ α1, ..., αr ≤ 1,−1 ≤ ν1, ..., νr ≤ 1 with max1≤i≤r

{
(αi − 1) +

νi

}
= 0. Let N = max1≤i≤r

{
αi−1

q + νi

}
. Then for any 0 ≤ ε ≤ 1

2 holds

max
1≤i≤r

{
φε(αi) + νi

}
≤ max

1≤i≤r

{αi − 1
κ

+ νi

}
, (6)

where κ = κ2,q

(
qN
q−1 , ε

)
is defined in Definition 1 (it is easy to see that 0 ≤ N ≤ q−1

q , and hence κ

is well defined).
Moreover, this is tight, in the following sense. For any 0 < N < q−1

q and 0 < ε <
1
2 , and for any κ̃ < κ2,q(x, ε), there exist 0 ≤ α1, α2 ≤ 1 and −1 ≤ ν1, ν2 ≤ 1 such that

max1≤i≤2

{
(αi − 1) + νi

}
= 0, max1≤i≤2

{
αi−1

q + νi

}
= N, and max1≤i≤2

{
φε(αi) + νi

}
>

max1≤i≤r

{
αi−1

κ̃ + νi

}
.

Proof of Proposition 2. We start with verifying simple boundary cases. First, we observe
that φ0(x) = x−1

2 (Lemma 9) and that φ 1
2
(x) = x − 1 (see the relevant discussion in the

proof of Corollary 1). In addition, it is easy to see that κ2,q

(
x, 1

2

)
= 1 for all q ≥ 1 and

0 ≤ x ≤ 1; and (bearing in mind that φ0(x) = x−1
2 ) that κ2,q(x, 0) = 2 for all q ≥ 1 and

0 ≤ x ≤ 1. Therefore (6) is an identity for ε = 0 and ε = 1
2 . Hence we may and will assume

from now on that 0 < ε < 1
2 .

Let q0 = 1+ (1− 2ε)2. We proceed to consider the (simple) cases N = 0 or N + 1
q ≤

1
q0

.

Note that in these cases we have κ = κ2,q

(
qN
q−1 , ε

)
= q0. Next, observe that, by the first and

the second claims of Lemma 3, for any 0 ≤ α ≤ 1 holds φε(α) ≤ α−1
q0

= α−1
κ and hence (6)

holds trivially in these cases.
We continue to prove (6), assuming from now on that N > 0 and that N + 1

q > 1
q0

. Let

Ω ⊆ R2 be the set defined in Definition 2. We now define a family of continuous functions
on Ω, which will play an important role in the following argument. Let (α1, ν1) be a point
in Ω with α1−1

q + ν1 = N. Define a function f = fα1,ν1 on Ω as follows. For (α, ν) ∈ Ω

with α < 1 let f (α, ν) be the value of κ for which φε(α) + ν = max
{

α1−1
κ + ν1, α−1

κ + ν
}

.

In addition, let f (1, 0) = 1−α1
ν1

.

Lemma 4. For any choice of (α1, ν1) as above the function fα1,ν1 is well-defined and continuous
on Ω.

Let M(α1, ν1) = maxΩ fα1,ν1 . The inequality (6) will follow from the next main techni-
cal claim, describing the behavior of M(α1, ν1), as a function of α1 and ν1. Before stating
this claim, let us make some preliminary comments. Note that the points

(
1− qN

q−1 , qN
q−1

)



Entropy 2022, 24, 1376 13 of 27

and
(

0, N + 1
q

)
are possible choices for (α1, ν1). Note also that α0 in the third part of the

claim is well-defined, by the fourth claim of Lemma 3.

Proposition 3.

1.

M
(

1− qN
q− 1

,
qN

q− 1

)
=

− qN
q−1

φε

(
1− qN

q−1

) .

2. If
− qN

q−1

φε

(
1− qN

q−1

) ≥ q, then for any choice of (α1, ν1) holds

M(α1, ν1) ≤ M
(

1− qN
q− 1

,
qN

q− 1

)
.

3. If
− qN

q−1

φε

(
1− qN

q−1

) ≤ q, then for any choice of (α1, ν1) holds

M
(

1− qN
q− 1

,
qN

q− 1

)
≤ M(α1, ν1) ≤ M

(
0, N +

1
q

)
=

α0 − 1
φε(α0)

,

where α0 is determined by 1− α0 −
α0φε(α0)

1− α0
= N +

1
q

.

We will prove Lemma 4 and Proposition 3 in Sections 3.1 and 3.2. For now we assume
their validity and complete the proof of Proposition 2.

We first prove (6). Note that if x = qN
q−1 then in the definition of κ2,q(x, ε) we have y =

q−1
q · x + 1

q = N + 1
q . Recall also that we may assume that N > 0 and that y = N + 1

q > 1
q0

.

By assumption αi + νi ≤ 1, and αi−1
q + νi ≤ N for all 1 ≤ i ≤ r . Moreover there

is an index 1 ≤ i ≤ r for which αi−1
q + νi = N. Assume, w.l.o.g., that i = 1. We apply

Proposition 3 to the function fα1,ν1 . Observe that the claim of the proposition together
with the definition of κ imply M(α1, ν1) ≤ κ. By the definition of fα1,ν1 , this means that

for any point (α, ν) ∈ Ω holds φε(α) + ν ≤ max
{

α1−1
κ + ν1, α−1

κ + ν
}

. We now claim that
this inequality holds for all the points (αi, νi), 1 ≤ i ≤ r, which will immediately imply
(6). In fact, points (αi, νi) with 0 ≤ νi ≤ 1 lie in Ω and hence the inequality holds for these
points. Furthermore, if νi < 0 for some 1 ≤ i ≤ r, then the point (αi, 0) lies in Ω, and hence
φε(αi) ≤ max

{
α1−1

q + ν1, αi−1
q

}
. However, then φε(αi) + νi ≤ max

{
α1−1

q + ν1, αi−1
q + νi

}
,

proving the inequality in this case as well.
We pass to proving the tightness of (6), starting with the case N + 1

q ≤
1
q0

. In this case,
by definition, κ = q0. Let κ̃ < κ be given. Observe that since, by assumption, N > 0, we

have q > q0. Set α1 =
1

q0
− 1

q−N
1

q0
− 1

q
. Set ν1 = 1−α1

q0
. Let δ > 0 be sufficiently small (depending

on N and κ̃). Set α2 = 1− δ and ν2 = δ. It is easy to see that α1, α2 and ν1, ν2 satisfy the

required constraints. We claim that φε(α2) + ν2 > max1≤i≤2

{
αi−1

κ̃ + νi

}
. In fact, for a

sufficiently small δ we have, using the second claim of Lemma 3 (and observing that φ′ε is
continuous), that

φε(α2) + ν2 = φε(1− δ) + δ ≈ − δ

q0
+ δ > − δ

κ̃
+ δ =

α2 − 1
κ̃

+ ν2,

and
φε(α2) + ν2 ≈ −

δ

q0
+ δ > 0 ≥ α1 − 1

κ̃
+

1− α1

q0
=

α1 − 1
κ̃

+ ν1.
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We pass to the case N + 1
q > 1

q0
and

− qN
q−1

φε

(
1− qN

q−1

) ≥ q. In this case κ =
− qN

q−1

φε

(
1− qN

q−1

) . Set

α1 = α2 = 1− qN
q−1 and ν1 = ν2 = qN

q−1 . It is easy to see that α1, α2 and ν1, ν2 satisfy the
required constraints. It is also easy to see that for any κ̃ < κ holds

φε(α1) + ν1 =
α1 − 1

κ
+ ν1 >

α1 − 1
κ̃

+ ν1.

It remains to deal with the case N + 1
q > 1

q0
and

− qN
q−1

φε

(
1− qN

q−1

) < q. Let α0 be determined

by 1− α0 − α0φε(α0)
1−α0

= N + 1
q . Then κ = α0−1

φε(α0)
. Set α1 = 0 and ν1 = N + 1

q . Set α2 = α0 and

ν2 = 1− α0. It is easy to see that in this case the function 1− α− αφε(α)
1−α is larger than N + 1

q

at α = 1− qN
q−1 , and hence the fourth claim of Lemma 3 implies that α2 = α0 > 1− qN

q−1 .
Using this, it is easy to see that α1, α2 and ν1, ν2 satisfy the required constraints. Furthermore,
note that α2 < 1 (again, using the fourth claim of Lemma 3). It is also easy to verify, using
the definition of α0, that

φε(α2) + ν2 =
α1 − 1

κ
+ ν1 =

α2 − 1
κ

+ ν2,

which implies that for any κ̃ < κ holds φε(α2)+ ν2 > max1≤i≤2

{
αi−1

κ̃ + νi

}
. This completes

the proof of Proposition 2.

We now prove Lemma 4 and Proposition 3. Recall that we may assume N > 0 and
N + 1

q > 1
q0

.

3.1. Proof of Lemma 4

Let (α1, ν1) be a point in Ω with α1−1
q + ν1 = N. We start with some simple but useful

observations about α1 and ν1.

Lemma 5.

1. α1 ≤ 1− qN
q−1 and ν1 ≥ qN

q−1 .

2. 1−α1
ν1

< q0.

Proof. The first claim of the lemma is an easy consequence of the inequalities α1−1
q + ν1 = N

and α1 + ν1 ≤ 1. We omit the details.
We pass to the second claim of the lemma, distinguishing two cases, q ≤ q0 and q > q0.

If q ≤ q0, then ν1 = N + 1−α1
q > 1−α1

q ≥ 1−α1
q0

. If q > q0, we use the fact that N + 1
q > 1

q0

to obtain 1−α1
q0

< (1− α1)
(

N + 1
q

)
= (1− α1)

(
α1
q + ν1

)
. Viewing the last expression as a

function of α1, it is easy to see that it equals ν1 at α1 = 0 and that it decreases in α1. Hence
ν1 ≥ (1− α1)

(
α1
q + ν1

)
> 1−α1

q0
, completing the argument in this case as well.

We now show that the function f = fα1,ν1 is well-defined and that its values lie in
the interval (0, q0). By Lemma 5, α1 < 1 and 0 < f (1, 0) = 1−α1

ν1
< q0. Let now α < 1.

In this case the function g(κ) = max
{

α1−1
κ + ν1, α−1

κ + ν
}

is a strictly increasing continuous

function of κ, which is −∞ at κ = 0. Furthermore, by Lemma 3, φε(α) <
α−1
q0

, implying
that g(q0) > φε(α) + ν. Hence, by the intermediate value theorem, there exists a unique
0 < κ < q0 for which φε(α) + ν = max

{
α1−1

κ + ν1, α−1
κ + ν

}
.

Next, we argue that f is continuous on Ω. Let (α, ν) ∈ Ω. If α < 1, then there exists a
compact neighborhood of (α, ν) in which both one-sided derivatives of g(κ) are positive
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and bounded. This, together with the fact that φε(α) + ν is continuous, implies that f is
continuous at (α, ν).

It remains to argue that f is continuous at (1, 0). Let O be a sufficiently small
neighbourhood of (1, 0) in Ω. Let (α, ν) ∈ O, with α < 1. Then φε(α) + ν is close to
φε(1) + 0 = 0. We would like to claim that f (α, ν) is close to f (1, 0) = 1−α1

ν1
. In fact,

assume towards contradiction that f (α, ν) is significantly larger than 1−α1
ν1

. In this case

φε(α) + ν = max
{

α1−1
f (α,ν) + ν1, α−1

f (α,ν) + ν
}
≥ α1−1

f (α,ν) + ν1 is significantly larger than 0 (tak-
ing into account that α1 < 1), reaching contradiction. On the other hand, assume that
f (α, ν) is significantly smaller than 1−α1

ν1
, and hence significantly smaller than q0 (by

the second claim of Lemma 5). Recall that φε(1) = 0 and that φ′ε(1) = 1
q0

. Hence

φε(α) = α−1
q0

+ O
(
(1− α)2) > α−1

f (α,ν) . This means that φε(α) + ν = α1−1
f (α,ν) + ν1, which

is significantly smaller than 0, again reaching contradiction. This completes the proof of
Lemma 4.

We collect some useful properties of f = fα1,ν1 in the following claim.

Corollary 6. 1. For any (α, ν) ∈ Ω holds φε(α) + ν = max
{

α1−1
f (α,ν) + ν1, α−1

f (α,ν) + ν
}

.

2. 0 < f ≤ M(α1, ν1) < q0 on Ω.
3. For any (α, ν) ∈ Ω holds f (α, ν) ≤ α−1

φε(α)
. (If α = 1 we replace the RHS of this inequality

with q0.)

Proof. The first two claims follow immediately from the preceding discussion and from
the continuity of f . For the third claim, recall that

φε(α) + ν = max
{

α1 − 1
f (α, ν)

+ ν1,
α− 1
f (α, ν)

+ ν

}
≥ α− 1

f (α, ν)
+ ν

3.2. Proof of Proposition 3

Let (α1, ν1) be given, let f = fα1,ν1 , and let M = M(α1, ν1) = maxΩ f . Let (α∗, ν∗) be a

maximum point of f . Then f (α∗, ν∗) = M and hence φε(α∗)+ ν∗ = max
{

α1−1
M + ν1, α∗−1

M + ν
}

.

Clearly either α1−1
M + ν1 6= α∗−1

M + ν∗ or α1−1
M + ν1 = α∗−1

M + ν∗. In the first case we say that
(α∗, ν∗) is a maximum point of the first type, and otherwise it is a maximum point of the
second type.

The following two claims constitute the main steps of the proof of Proposition 3. They
describe the respective behavior of maxima points of the first and the second type.

Lemma 6. Let (α∗, ν∗) be a maximum point of f of the first type. Then the following two
claims hold.

• α1−1
f (α∗ ,ν∗) + ν1 > α∗−1

f (α∗ ,ν∗) + ν∗.

• α∗ ≤ 1− qN
q−1 .

Lemma 7. If (α1, ν1) =
(

1− qN
q−1 , qN

q−1

)
, then

(
1− qN

q−1 , qN
q−1

)
is the unique maximum point of

f . This is a maximum point of the second type.
If (α1, ν1) 6=

(
1− qN

q−1 , qN
q−1

)
, then there are two possible cases.

•
− qN

q−1

φε

(
1− qN

q−1

) ≥ q. Let (α∗, ν∗) be a maximum point of f of the second type in this case. Then

α∗ ≤ 1− qN
q−1 .
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•
− qN

q−1

φε

(
1− qN

q−1

) < q. In this case f has a unique maximum point (α∗, ν∗). This point is of the

second type. Furthermore, α∗ > 1− qN
q−1 , and it is uniquely determined by the following

identity:
α∗ − 1
φε(α∗)

=
α∗ − α1

α∗ − (1− ν1)
.

Lemmas 6 and 7 will be proved in Section 3.3. At this point we prove Proposition 3
assuming these lemmas hold.

We start with the first claim of Proposition 3. Let α1 = 1− qN
q−1 and ν1 = qN

q−1 . Let
f = fα1,ν1 . By the first claim of Lemma 7, we have

M(α1, ν1) = f (α1, ν1) =
α1 − 1

φε(α1, ν1)
=

− qN
q−1

φε

(
1− qN

q−1

) .

We pass to the second claim of the proposition. Assume that
− qN

q−1

φε

(
1− qN

q−1

) ≥ q. Let

f = fα1,ν1 , for some α1 and ν1. Let (α∗, ν∗) be a maximum point of f . Then Lemmas 6 and 7
imply that α∗ ≤ 1− qN

q−1 . Hence

M(α1, ν1) = f (α∗, ν∗) ≤ α∗ − 1
φε(α∗)

≤
− qN

q−1

φε

(
1− qN

q−1

) = M
(

1− qN
q− 1

,
qN

q− 1

)
.

Here in the second step we have used the third claim of Corollary 6, in the third step the
third claim of Lemma 3 and in the fourth step the first claim of the proposition.

We pass to the third claim of the proposition. Assume that
− qN

q−1

φε

(
1− qN

q−1

) < q. Let

f = fα1,ν1 , for some α1 and ν1. Then, by Lemma 7, f has a unique maximum point (α∗, ν∗).
This means that α∗ is determined by α1 and ν1, and furthermore, since ν1 = N + 1−α1

q , α∗ is
a function of α1. We will show the following claim below.

Lemma 8. If (α1, ν1) 6=
(

1− qN
q−1 , qN

q−1

)
and

− qN
q−1

φε

(
1− qN

q−1

) < q, then α∗ is a decreasing function

of α1.

Assume Lemma 8 to hold. We have

M(α1, ν1) = f (α∗, ν∗) =
α∗(α1)− 1
φε(α∗(α1))

≤ α∗(0)− 1
φε(α∗(0))

= M
(

0, N +
1
q

)
.

The second step uses the fact that (α∗, ν∗) is a maximum point of the second type, and hence
f (α∗, ν∗) = α∗−1

φ(α∗) . The third step uses Lemma 8 and the third claim of Lemma 3, and the

fourth step the fact that α1 = 0 implies ν1 = N + 1
q .

Next, by Lemma 7, α = α∗(0) is determined by the identity α−1
φε(α)

= α

α−
(

q−1
q −N

) which,

after rearranging, gives 1− α− αφε(α)
1−α = N + 1

q . Hence, by the fourth claim of Lemma 3,

α∗(0) = α0 and M
(

0, N + 1
q

)
= α0−1

φε(α0)
.
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To conclude the proof of the third claim of the proposition, observe that since α∗ >

1− qN
q−1 , we have

M(α1, ν1) = f (α∗, ν∗) =
α∗ − 1
φε(α∗)

>
− qN

q−1

φε

(
1− qN

q−1

) ,

where the last inequality is by the third claim of Lemma 3. This completes the proof of
Proposition 3.

It remains to prove Lemmas 6–8.

3.3. Proofs of the Remaining Lemmas

Proof of Lemma 6. We start with the first claim of the lemma. Assume towards contra-
diction that α1−1

f (α∗ ,ν∗) + ν1 < α∗−1
f (α∗ ,ν∗) + ν∗. Since f is a positive continuous function on

Ω, there is a neighborhood O of (α∗, ν∗) in Ω on which α1−1
f (α,ν) + ν1 < α−1

f (α,ν) + ν. This

means that any point (α, ν) ∈ O satisfies φε(α) + ν = α−1
f (α,ν) + ν, and hence f (α, ν) = α−1

φε(α)
.

Since f (α∗, ν∗) ≥ f (α, ν), this implies that α∗−1
φε(α∗)

≥ α−1
φε(α)

, and hence, by the third claim of
Lemma 3, that α∗ ≥ α. It follows that α∗ has to be 1, and hence (α∗, ν∗) = (1, 0). However,
in this case α1−1

f (α∗ ,ν∗) + ν1 = α∗−1
f (α∗ ,ν∗) + ν∗ = 0, reaching contradiction.

We pass to the second claim of the lemma. By the first claim α1−1
f (α∗ ,ν∗) + ν1 > α∗−1

f (α∗ ,ν∗) + ν∗.
We claim that this implies that (α∗, ν∗) is a local maximum of φε(α) + ν. In fact, arguing as
above, there is a neighborhood O of (α∗, ν∗) on which α1−1

f (α,ν) + ν1 > α−1
f (α,ν) + ν. This means

that for any point (α, ν) ∈ O we have φε(α) + ν = α1−1
f (α,ν) + ν1. Since f (α∗, ν∗) ≥ f (α, ν), this

implies that φε(α) + ν ≤ φ(α∗) + ν∗. To complete the proof, recall that any local maximum
(α, ν) of φ(α) + ν has α ≤ 1− qN

q−1 (as shown in the proof of Proposition 1).

Proof of Lemma 7. Let (α∗, ν∗) be a maximum point of f of the second type. The first
observation is that (α∗, ν∗) has to lie on the upper boundary of Ω. In fact, assume not. Then
for a sufficiently small τ > 0 the point (α, ν) = (α∗, ν∗ + τ) is in Ω. Since f (α, ν) ≤ f (α∗, ν∗),
we have φε(α) + ν > φε(α∗) + ν∗ = α1−1

f (α∗ ,ν∗) + ν1 ≥ α1−1
f (α,ν) + ν1. Hence f (α, ν) is determined

by the equality φε(α) + ν = α−1
f (α,ν) + ν, which implies f (α, ν) = f (α∗, ν∗) = α∗−1

φε(α∗)
. Hence

(α, ν) is a point of maximum of f of the first type with α1−1
f (α,ν) + ν1 < α−1

f (α,ν) + ν. This,
however, contradicts the first claim of Lemma 6.

Recall that the upper boundary of Ω is a piecewise linear curve which starts as the
straight line α

q + ν = N + 1
q , for 0 ≤ α ≤ 1− qN

q−1 and continues as the straight line α+ ν = 1

for 1− qN
q−1 ≤ α ≤ 1. Hence there are two cases to consider: In the first case α∗ ≤ 1− qN

q−1

and α∗
q + ν∗ = N + 1

q . In the second case 1− qN
q−1 < α∗ ≤ 1 and α∗ + ν∗ = 1.

Assume that the second case holds. Then (α∗, ν∗) satisfies

1. α1−1
f (α∗ ,ν∗) + ν1 = α∗−1

f (α∗ ,ν∗) + ν∗ = φε(α∗) + ν∗.

2. 1− qN
q−1 < α∗ ≤ 1 and α∗ + ν∗ = 1.

In particular, f (α∗, ν∗) = α∗−1
φε(α∗)

= α∗−α1
α∗−(1−ν1)

. Consider the following two functions

of α: g1(α) = α−1
φε(α)

and g2(α) = α−α1
α−(1−ν1)

, for α > 1− qN
q−1 . Note that g2 is well-defined

since, by Lemma 5, ν1 ≥ qN
q−1 . By the third claim of Lemma 3, g1 is strictly increasing.

On the other hand, g2(α) = 1 + 1−α1−ν1
α−(1−ν1)

is non-increasing. Note also that g1(1) = q0 (more

precisely, limα→1 g1(α) = q0) and, by Lemma 5, g2(1) =
1−α1

ν1
< q0. This means that g1 and

g2 coincide at a (unique) point 1− qN
q−1 < α < 1 iff g1

(
1− qN

q−1

)
< g2

(
1− qN

q−1

)
.
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Observe that if (α1, ν1) =
(

1− qN
q−1 , qN

q−1

)
then g2 is the constant 1-function. Further-

more, by the first and the third claims of Lemma 3, g1

(
1− qN

q−1

)
≥ g1(0) = 2

log2(4/q0)
≥

1, and hence in this case g1 and g2 cannot coincide for α > 1 − qN
q−1 . If (α1, ν1) 6=(

1− qN
q−1 , qN

q−1

)
then it is easy to see (recall that α1

q + ν1 = N + 1
q ) that g2

(
1− qN

q−1

)
=

q, and hence the two functions have a unique intersection at some α > 1 − qN
q−1 iff

g1

(
1− qN

q−1

)
=

− qN
q−1

φε

(
1− qN

q−1

) is smaller than q.

To recap, the second case can hold only provided (α1, ν1) 6=
(

1− qN
q−1 , qN

q−1

)
and

− qN
q−1

φε

(
1− qN

q−1

) < q. Furthermore, if it holds then 1− qN
q−1 < α∗ < 1 is uniquely determined by

the equality g1(α
∗) = g2(α

∗).
We can now complete the proof of the lemma. First, let (α1, ν1) =

(
1− qN

q−1 , qN
q−1

)
.

By the preceding discussion, in this case a maximum point (α∗, ν∗) of f of the second type
has to have α∗ ≤ α1. Moreover, taking into account Lemma 6, this is true for any maximum
point of f . By the third claim of Corollary 6, this means that M(α1, ν1) ≤ α1−1

φε(α1)
= f (α1, ν1).

Hence (α1, ν1) is a maximum point of f . It is trivially a maximum point of the second
type. To see that it is a unique maximum point, note that for any point (α, ν) on the upper
boundary of Ω, if α = α1, then necessarily ν = ν1. So, for any other putative maximum
point (α, ν), we would have α < α1 and hence, by the third claims of Lemma 3 and the
third claim of Corollary 6, f (α, ν) ≤ α−1

φε(α)
< α1−1

φε(α1)
= f (α1, ν1). This proves the first claim

of the lemma.
Assume now that (α1, ν1) 6=

(
1− qN

q−1 , qN
q−1

)
. Let (α∗, ν∗) be a maximum point of f of

the second type. If g1

(
1− qN

q−1

)
=

− qN
q−1

φε

(
1− qN

q−1

) ≥ q, then the preceding discussion implies

that α∗ ≤ 1− qN
q−1 , proving the second claim of the lemma.

If
− qN

q−1

φε

(
1− qN

q−1

) < q, let α be the unique solution for g1(α) = g2(α) on 1− qN
q−1 < α < 1.

Set α∗ = α and ν∗ = 1− α. We claim that (α∗, ν∗) is the unique maximum point of f (note
that by Lemma 6 it would necessarily be of the second type). In fact, let us first verify that
α1−1

κ + ν1 = α∗−1
κ + ν∗ = φε(α∗) + ν∗, for κ = α∗−1

φε(α∗)
. The second equality is immediate,

by the definition of κ. The first equality is equivalent to κ = α∗−α1
α∗−(1−ν1)

, which follows from

the definitions of α∗ and κ. Hence f (α∗, ν∗) = κ = α∗−1
φε(α∗)

. For any other putative maximum

point (α, ν), we would have, by the preceding discussion, that α ≤ 1− qN
q−1 < α∗ and hence,

as above, f (α, ν) ≤ α−1
φε(α)

< f (α∗, ν∗). This proves the third claim of the lemma.

Proof of Lemma 8. In the assumptions of the lemma, α∗ is the unique solution on
(

1− qN
q−1 , 1

)
of the identity

α∗ − 1
φε(α∗)

=
α∗ − α1

α∗ − (1− ν1)
.

Here the LHS is a strictly increasing and the RHS a strictly decreasing (since by assumption
α1 6= 1− qN

q−1 , and hence α1 + ν1 < 1) functions of α∗. It follows that to prove the claim of

the lemma it suffices to show that for a fixed α∗ > 1− qN
q−1 the RHS is a decreasing function

of α1 (keeping in mind that ν1 = − α1
q +

(
N + 1

q

)
). However, this is easily verifiable by a

direct differentiation of the RHS w.r.t. α1.
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This completes the proof of Proposition 2 and of (5). We proceed to complete the proof
of Theorem 1. The tightness of (5) follows from the tightness of (6), similarly to the way the
tightness of (4) was shown in the proof of Proposition 1. We omit the details.

It remains to consider the properties of the function κ2,q. We first remark that it is easy
to see, using the properties of the function φε given in Lemma 3, that κ2,q is a continuous
function of its first variable (we omit the details). In particular, we can replace strict
inequalities with non-strict ones in the definition of κ2,q in Definition 1. Now there are two
cases to consider.

• q ≥ q0. In this case, by the third claim of Lemma 3, − x
φε(1−x) is never larger than q,

and hence

κ2,q(x, ε) =

{
q0 if y ≤ 1

q0
α0−1

φε(α0)
if y ≥ 1

q0

Here y = q−1
q · x +

1
q , q0 = 1+ (1− 2ε)2, and α0 is determined by 1− α0− α0φε(α0)

1−α0
= y.

Note that α0 is well-defined, by the fourth claim of Lemma 3. The fact that κ2,q is
decreasing in x follows from combining the third and the fourth claims of Lemma 3.
In fact, κ2,q is a constant-

(
1 + (1− 2ε)2) function for 0 ≤ x ≤ q−q0

(q−1)q0
, and it is strictly

decreasing for larger x.
• q < q0. In this case y is always greater than 1

q0
and we have that

κ2,q(x, ε) =

{
− x

φε(1−x) if − x
φε(1−x) ≥ q

α0−1
φε(α0)

if − x
φε(1−x) ≤ q

It suffices to show that κ2,q is decreasing on both relevant subintervals of [0, 1], and this
again follows from the third and the fourth claims of Lemma 3. In this case κ2,q is
strictly decreasing on [0, 1].

This completes the proof of Theorem 1. �

4. Remaining Proofs

Proof of Lemma 3. The strict concavity of φε and the bounds on its derivative were shown
in [9], Lemma 2.13 (note that φε(x) = 1

2 φ̃(x, 2ε(1− ε)) in terms of [9]). The value of φε at
the endpoints of the interval [0, 1] are directly computable.

We pass to the third claim of the lemma. Taking the derivative and rearranging,
it suffices to prove that for any α ∈ (0, 1) holds φε(α) > (α − 1)φ′ε(α). This follows
immediately from the strict concavity of φε and the fact that φε(1) = 0.

We pass to the last claim of the lemma. Taking the derivative and rearranging, it
suffices to prove that for any α ∈ (0, 1) holds

(1− α)
(
αφ′ε(α) + (1− α)

)
> −φε(α).

Since (1− α) · φ′ε(α) > −φε(α), it suffices to show that αφ′ε(α) + (1− α) ≥ φ′ε(α),
and this follows from the first two claims of the lemma. The values of the function g at the
endpoints are directly computable.

Proof of Lemma 1. We start with a technical lemma which deals with the behavior of the
function φε(x) in the vicinity of ε = 0. We write ε ∼ 0 as a shorthand for “ε close to 0”. We
again use the fact that φε(x) = Φ(x, 2ε(1− ε)) = 1

2 φ̃(x, 2ε(1− ε)), where the function φ̃
was defined and studied in [9]. In the calculations below φ(x, ε) is written instead of φε(x),
for notational convenience.

Lemma 9. Let 0 < t < 1. Then

1.

φ(t, 0) =
t− 1

2
and for ε ∼ 0 holds

∣∣∣φ(t, ε)− t− 1
2

∣∣∣ ≤ O(ε).
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2.
∂φ

∂ε
(t, 0) =

2
√

H−1(t)(1− H−1(t))− 1
ln(2)

and for ε ∼ 0 holds

∣∣∣∂φ

∂ε
(t, ε)− 2

√
H−1(t)(1− H−1(t))− 1

ln(2)

∣∣∣ ≤ O(ε).

3.
∂φ

∂t
(t, 0) =

1
2

and for ε ∼ 0 holds
∣∣∣∂φ

∂t
(t, ε)− 1

2

∣∣∣ ≤ O(ε).

Proof of Lemma 9. Notation. Here and below we write a± ε as a shorthand for the interval
[a− ε, a + ε].
Recall that

φ̃(t, ε) = t− 1 + σH
( z

σ

)
+ (1− σ)H

(
z

1− σ

)
+ 2z log2(ε) + (1− 2z) log2(1− ε),

where σ = H−1(t) and z = z(t, ε) =
−ε2+ε

√
ε2+4(1−2ε)σ(1−σ)
2(1−2ε)

.

The fact that φ(t, 0) = 1
2 φ̃(t, 0) = t−1

2 is verified by inspection, observing that z(t, 0) =
0 for any t. Note also that, by assumption, σ > 0, and hence z(t, ε) ∈

√
σ(1− σ) · ε±O

(
ε2)

for a sufficiently small ε.
Using (as in the proof of Lemma 2.13 in [9]) the fact that for ε > 0 holds (σ−z)(1−σ−z)

z2 =
(1−ε)2

ε2 , and writing δ = 2ε(1− ε), we have that

∂φ(t, ε)

∂ε
=

1
2
· ∂φ̃(t, δ)

∂ε
=

1− 2ε

ln(2)
· 2z− δ

δ(1− δ)
.

Hence for ε ∼ 0 we have ∂φ(t,ε)
∂ε ∈ 2

√
σ(1−σ)−1
ln(2) ± O(δ), or equivalently ∂φ(t,ε)

∂ε ∈
2
√

σ(1−σ)−1
ln(2) ±O(ε).
In particular,

∂φ(t, ε)

∂ε |ε=0
= lim

ε→0

∂φ(t, ε)

∂ε
=

2
√

σ(1− σ)− 1
ln(2)

=
2
√

H−1(t)(1− H−1(t))− 1
ln(2)

.

This proves both the first and the second claims of the lemma.
We pass to the third claim of the lemma. As shown in the proof of Lemma 2.13 in KS2

we have ∂φ̃
∂t (t, ε) =

ln( 1−σ−z
σ−z )

ln( 1−σ
σ )

. Hence

∂φ(t, ε)

∂t
=

1
2
· ∂φ̃(t, δ)

∂t
=

1
2
·

ln
(

1−σ−z
σ−z

)
ln
(

1−σ
σ

) ,

where z = z(t, δ). Recall for any 0 < t < 1 we have z(t, 0) = 0 and in addition for
δ ∼ 0 we have z(t, δ) ∈

√
σ(1− σ) · δ±O

(
δ2). The third claim of the lemma now follows

by inspection. This completes the proof of Lemma 9.

We proceed with the proof of Lemma 1. First, consider the definition of κ = κ2,2. For ε
sufficiently close to zero, we have that x+1

2 > 1
q0

(recall that q0 = 1 + (1− 2ε)2) and hence
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κ = α−1
φ(α,ε) , where α = α(ε) is determined by 1− α + αφ(α,ε)

α−1 = x+1
2 . Taking the derivative

w.r.t. ε in the definition of α and rearranging gives

α′(ε) = −
α(α− 1) ∂φ

∂ε (α, ε)

α(α− 1) ∂φ
∂α (α, ε)− φ(α, ε)− (α− 1)2

.

Using the first claim of Lemma 9, it is easy to see that α(0) = 1− x. Hence, using all
claims of Lemma 9, we have that

α′(0) = − 2
ln 2
·

α(0)
(

2
√

H−1(α(0))(1− H−1(α(0)))− 1
)

1− α(0)
=

− 2
ln 2
·
(1− x)

(
2
√

H−1(1− x)(1− H−1(1− x))− 1
)

x
Next, we compute κ and κ′ at 0. Note that by the definition of κ, we have 1− α + α

κ =
x+1

2 . Hence, κ = α
x+1

2 +α−1
and κ′ = κ(1−κ)α′

α . In particular, κ(0) = 2 and

κ′(0) = = − 2α′(0)
α(0)

=
4

ln 2
·

(
2
√

H−1(1− x)(1− H−1(1− x))− 1
)

x
,

proving the first claim of the proposition.
Let now ε ∼ 0. We start with estimating α(ε) and κ(ε). From the identity 1− α +

αφ(α,ε)
α−1 = x+1

2 , using the monotonicity of the LHS in α (by Lemma 2.3) and Lemma 9, it is
easy to see that α(ε) ∈ 1− x±O(ε). From this, and from the identity 1− α + α

κ = x+1
2 , we

get κ(ε) = α(ε)
x+1

2 +α(ε)−1
∈ 2±O(ε).

Proceeding in a similar vein, using the above expression for α′, we get that

α′(ε) ∈ 2
ln(2)

· 1− x
x
·
(

1− 2
√

H−1(1− x)(1− H−1(1− x))
)
±O(ε),

and

κ′(ε) =
κ(ε)(1− κ(ε))α′(ε)

α(ε)
∈ = − 2α′(ε)

α(ε)
⊆

4
ln 2
·

(
2
√

H−1(1− x)(1− H−1(1− x))− 1
)

x
±O(ε),

completing the proof of the lemma.

Proof of Corollary 2. Let q = 2 and κ = κ2,2 (see the second claim of Corollary 1 for a
more explicit statement of Theorem 1 in this case). Viewing both sides of (5) as functions
of ε, and writing L(ε) for the LHS and R(ε) for the RHS, we have L(0) = R(0) = ‖ f ‖2,
and L(ε) ≤ R(ε) for 0 ≤ ε ≤ 1

2 . It is easy to see that both L and R are differentiable, and we
may deduce that L′(0) ≤ R′(0). Computing the derivatives (see, e.g., [3]) gives

L′(0) = − 1
2
· E( f , f )
‖ f ‖2

and R′(0) =
ln(2)κ′(0)

4
·

Ent
(

f 2)
‖ f ‖2

,

where we write κ′(0) for ∂κ
∂ε |ε=0. Hence L′(0) ≤ R′(0) is equivalent to

E( f , f ) ≥ − ln(2)κ′(0)
2

· Ent
(

f 2
)

. (7)
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The claim of the corollary now follows from the first claim of Lemma 1. It only remains
to add that the fact that `(·) a convex and increasing function on [0, 1], taking [0, 1] onto
[2 ln 2, 2] was proved in [20].

Proof of Corollary 3. Let us point out that our argument follows along the same lines
as the proof of the same result in [10]. We do believe that the argument here is worth
presenting in full, since it seems to be somewhat more explicit and easier to parse.

We use the simple fact (see, e.g., [4]) that for any 0 ≤ ε ≤ 1
2 and for any α ∈ {0, 1}n

holds f̂ε(α) = (1− 2ε)|α| f̂ (α). Hence, using Parseval’s identity in the first step below, we
have

‖ fε‖2
2 = ∑

α∈{0,1}n
(1− 2ε)2|α| f̂ 2(α) ≥ (1− 2ε)2µn · ∑

|α|≤µn
f̂ 2(α).

Since this holds for any 0 ≤ ε ≤ 1
2 , we deduce that

∑
|α|≤µn

f̂ 2(α) ≤ min
0≤ε≤ 1

2

‖ fε‖2
2

(1− 2ε)2µn ≤ min
0≤ε≤ 1

2

‖ f ‖2
κ

(1− 2ε)2µn ,

where we have used Theorem 1 with q = 2 in the second step, and κ = κ(ε) = κ2,2

(
Ent2

(
f
‖ f‖1

)
n , ε

)
.

Let F(ε) = 1
n log2

(
‖ f ‖2

κ

(1−2ε)2µn

)
= 1

n log2
(
‖ f ‖2

κ

)
− 2µ log2(1− 2ε). Since κ(0) = 2, we

have F(0) = 1
n log2

(
‖ f ‖2

2
)
. Hence the claim of the corollary is equivalent to the claim

that min0≤ε≤ 1
2

F(ε) is negative and bounded away from F(0) by some absolute constant.

To show this, it suffices to show that F′(ε) is negative and bounded away from 0 by an
absolute constant for ε in a constant length interval [0, ε0].

Recall that for any nonnegative non-zero function g on {0, 1}n holds
Ent(g2)
E g2 ≥

log2

(
E g2

E2 g

)
= Ent2

(
g
‖g‖1

)
(see, e.g., [10]). Recall also that ∂

∂ε log2

(
‖ f ‖κ(ε)

)
= κ′

κ2 ·
Ent(| f |κ)
‖ f ‖κ

κ
.

Hence, recalling that, by Lemma 1, κ′ < 0 in the vicinity of 0, we have

F′(ε) = 2
κ′

κ2 ·
1
n

Ent(| f |κ)
‖ f ‖κ

κ
+

4
ln(2)

· µ

1− 2ε
≤ 2

κ′

κ2 ·
1
n

log2

(
E(| f |κ)
E2 | f |κ/2

)
+

4
ln(2)

· µ

1− 2ε
.

Let x =
Ent2

(
f
‖ f ‖1

)
n = 1− H(ρ). Recalling again that κ(0) = 2 and applying the first

claim of Lemma 1 we get

F′(0) ≤ κ′(0)
2
· x +

4µ

ln(2)
=

4
ln(2)

·
(

µ−
(

1
2
−
√

ρ(1− ρ)

))
< 0.

It now suffices to show that for sufficiently small ε we have F′(ε) ≤ F′(0) +O(ε). Tak-
ing the second claim of Lemma 1 into account, it is enough to show that 1

n log2

(
E(| f |κ)
E2 | f |κ/2

)
≥

x−O(ε). Let G(ε) = 1
n log2

(
E(| f |κ)
E2 | f |κ/2

)
. Then G(0) = x and it suffices to show that |G′| is

bounded by an absolute constant. A simple calculation gives that

G′ =
κ′

κ
·

 1
n

Ent(| f |κ)
E | f |κ − 2

n

Ent
(
| f |κ/2

)
E | f |κ/2 + G

.

The RHS in the last expression is bounded by a constant, since for any nonnegative

non-zero function g on {0, 1}n both Ent(g)
E g and log2

(
E g2

E2(g)

)
are bounded by n.
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Proof of Corollary 4.
The first claim of the corollary
Let D ⊆ {0, 1}n, |D| = 2H(ρ)n. Let MD be the adjacency matrix of the subgraph of the

discrete cube induced by the vertices of D. Let λ(D) be the maximal eigenvalue of MD.
Let f be a maximal eigenvector of MD. We view f as a function on D and extend it to a
function on {0, 1}n by defining it to be zero outside D. Let A be the adjacency matrix of
{0, 1}n. Then λ(D) = 〈 f ,MD f 〉

〈 f , f 〉 = 〈 f ,A f 〉
〈 f , f 〉 . Note also that since f is supported on D we have

E2| f | =
(
〈 f , sign( f ) · 1D〉

)2
≤ E f 2 ·E

(
sign( f ) · 1D

)2
= E f 2 · |D|

2n = E f 2 · 2(H(ρ)−1)n.

It follows that
Ent2

(
f
‖ f ‖1

)
n ≥ 1− H(ρ).

Next, it is easy to check that for any function g on {0, 1}n holds E(g, g) = 2〈g, (nI − A)g〉,
where I is the 2n × 2n identity matrix. Hence, using Corollary 2 and the fact that

Ent( f 2)
E f 2 ≥

log2

(
E f 2

E2 | f |

)
= Ent2

(
f
‖ f ‖1

)
, we have, writing x for 1

n Ent2

(
f
‖ f ‖1

)
,

λ(D) =
〈 f , A f 〉
〈 f , f 〉 = n− 1

2
E( f , f )
〈 f , f 〉 ≤ n− 1

2
`(x) · Ent

(
f 2)

E f 2 ≤

n− n
2

x`(x) ≤ n
(

1− 1
2
(1− H(ρ)`

(
1− H(ρ)

))
= 2

√
ρ(1− ρ) · n.

This is almost tight if we set r = dρne and take D = {x ∈ {0, 1}n : |x| ≤ r} to be the
Hamming ball of radius r around 0. In fact, recall that |D| ≈ 2H(ρ)n (see, e.g., [19]) and,
as shown in [19], λ(D) ≥ 2

√
ρ(1− ρ) · n− o(n).

The second claim of the corollary
Let 0 < δ < 1

2 . Let d = bδnc, and let f be a feasible solution of the dual linear program
of [15] with parameters n and d. Then, as observed by [29] f can be viewed as a function
on {0, 1}n with the following properties:

• f is symmetric, that is f (x) depends only on |x|.
• f (x) ≤ 0 for |x| ≥ d.
• f̂ ≥ 0 and f̂ (0) = 1.
• f (0) ≤ 2RLP(δ)·n+o(n).

To prove the claim, we will show that any function f with the first three of these

properties satisfies 1
n log2( f (0)) ≥

1−H(δ)+H
(

1
2−
√

δ(1−δ)
)

2 − on(1).

Notation: We write ‖g‖q,F for
(

∑α∈{0,1}n |g(α)|q
)1/q

. Note that Parseval’s identity

states ‖ f ‖2 = ‖ f̂ ‖2,F . We write ≈,., and& to denote equality or inequality which hold up
to lower order terms. To give an example, recall that for 0 < ρ ≤ 1

2 the cardinalities of the
Hamming ball {x ∈ {0, 1}n : |x| ≤ r} and the Hamming sphere {x ∈ {0, 1}n : |x| = r} are
2H(ρ)n, up to lower order terms. We write this as 1

n log2(|{x ∈ {0, 1}n : |x| ≤ r}|) ≈ H(ρ).
We start with some preliminary observations. First, we need some simple and well-

known facts from Fourier analysis on {0, 1}n. If f is symmetric, then so is f̂ . Next,
f̂ (0) = E f ≤ ‖ f ‖1. Furthermore, finally, using the fact that in our case f̂ ≥ 0, f (0) =

∑α∈{0,1}n f̂ (α) = ‖ f̂ ‖1,F .
Next, we claim that if f is symmetric and if, for some 0 ≤ i ≤ n holds 1

2n (
n
i )| f (i)| ≥

Ω
(

1
n

)
· ‖ f ‖1 then ‖ f ‖2

‖ f ‖1
≥ Ω

(
1
n

)
·
√

2n

(n
i )

. In fact, we will have

‖ f ‖2
2 ≥

1
2n

(
n
i

)
f 2(i) ≥ Ω

(
1
n2

)
· 1

2n

(
n
i

)(
2n

(n
i )
‖ f ‖1

)2
= Ω

(
1
n2

)
· 2n

(n
i )
‖ f ‖2

1.



Entropy 2022, 24, 1376 24 of 27

Similarly, if for some 0 ≤ j ≤ n holds (n
j) f̂ 2(j) ≥ Ω

(
1
n

)
· ‖ f̂ ‖2

2,F then ‖ f̂ ‖1,F
‖ f̂ ‖2,F

≥

Ω
(

1
n

)
·
√
(n

j).

Finally, we need a slight extension of Corollary 3. As stated, it shows that if f has
a large second entropy, then f̂ cannot attain its `2 norm in a Hamming ball of small
radius around 0. We claim, as was also observed in [10], that this holds more generally for
Hamming balls with arbitrary centers in {0, 1}n. To see that, let z ∈ {0, 1}n, and define
g = f ·Wz, where Wz is the corresponding Walsh-Fourier character. It is easy to see that
for any y ∈ {0, 1}n holds ĝ(y) = f̂ (y + z), and hence g has the same first and second
norms as f . Moreover, writing B(z, r) for the Hamming ball of radius r around z, we have
∑α∈B(z,r) f̂ 2(α) = ∑β∈B(0,r) ĝ2(β).

We pass to the proof of the claim. Note that since f (x) ≤ 0 for |x| ≥ d and since
E f ≥ 0, there exists 0 ≤ i ≤ d− 1 such that 1

2n (
n
i )| f (i)| ≥ Ω

(
1
n

)
· ‖ f ‖1. Hence

1
n

Ent2

(
f
‖ f ‖1

)
=

1
n

log2

(
‖ f ‖2

2
‖ f ‖2

1

)
& 1− H

(
i
n

)
≥ 1− H(δ).

By Corollary 3 this means that f̂ cannot attain its `2 norms inside Hamming balls or
radii much smaller than r(δ) :=

(
1
2 −

√
δ(1− δ)

)
· n around the all-0 and all-1 vectors.

Hence there exists r(δ)− o(n) ≤ j ≤ r(δ) + o(n) such that (n
j) f̂ 2(j) ≥ Ω

(
1
n

)
· ‖ f̂ ‖2

2,F . It
follows that

1
n

log2

(
‖ f̂ ‖1,F

‖ f̂ ‖2,F

)
&

H
(

j
n

)
2

&
H
(

1
2 −

√
δ(1− δ)

)
2

.

We can now complete the proof of the second claim of the corollary. We have

0 =
1
n

log2

(
f̂ (0)

)
≤ 1

n
log2(‖ f ‖1) .

1
n

log2(‖ f ‖2)−
1− H(δ)

2
=

1
n

log2

(
‖ f̂ ‖2,F

)
− 1− H(δ)

2
.

1
n

log2

(
‖ f̂ ‖1,F

)
−

1− H(δ) + H
(

1
2 −

√
δ(1− δ)

)
2

=

1
n

log2( f (0))−
1− H(δ) + H

(
1
2 −

√
δ(1− δ)

)
2

.

�

Proof of Corollary 5. Let 0 ≤ s ≤ n/2 and let f be a polynomial of degree s on {0, 1}n.
We need two simple and well-known facts from Fourier analysis on {0, 1}n. First, that the
Fourier expansion of f is supported on characters of weight at most s; and second, that for
any function g on {0, 1}n holds E(g, g) = 4 ∑α∈{0,1}n |α|ĝ2(α). Combining these two facts
implies that

E( f , f ) = 4 ∑
α∈{0,1}n

|α| f̂ 2(α) = 4 ∑
|α|≤s
|α| f̂ 2(α) ≤ 4s · ∑

|α|≤s
f̂ 2(α) = 4s ·E f 2,

where in the last step we used Parseval’s identity.
Write σ for s/n and x for 1

n Ent2

(
f
‖ f ‖1

)
. We have, using Corollary 2,

4σn = 4s ≥ E( f , f )
E f 2 ≥ `(x) ·

Ent
(

f 2)
E f 2 ≥ nx`(x) =

n ·
(

2− 4
√

H−1(1− x)(1− H−1(1− x))
)

.
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Rearranging and simplifying, this is equivalent to

1
n

log2

(
‖ f ‖2

‖ f ‖1

)
=

x
2
≤

1− H
(

1
2 −

√
σ(1− σ)

)
2

,

completing the proof.

Proof of Corollary 1. We start with the first claim of the corollary. First consider the case
ε = 1

2 . It is easy to see that φ 1
2
(x) = x− 1 (note that in the definition of Φ(x, ε) we have

y
(

x, 1
2

)
= limε→ 1

2
y(x, ε) = H−1(x)

(
1− H−1(x)

)
) and hence in this case the value of κ

given by the claim is 1 (as it should be).
Assume now ε < 1

2 . This implies that q0 = 1 + (1− 2ε)2 > 1. By the first claim of
Lemma 3, this means that for any 0 ≤ x ≤ 1 we have −x

φε(1−x) ≥ −
1

φε(0)
= 2

log2

(
4

q0

) > 1.

Hence, it is easy to see that for q sufficiently close to 1 the first and the third clauses in the
definition of κ2,q in Definition 1 do not apply, and we have κ2,q(x, ε) = −x

φε(1−x) . Theorem 1
then gives

‖ fε‖2 ≤ ‖ f ‖κ , with κ = −
Entq

(
f
‖ f ‖1

)
n

φε

(
1−

Entq

(
f
‖ f ‖1

)
n

) .

Taking q→ 1 and recalling that Entq(·)→q→1 Ent(·) completes the proof of the claim.
We pass to the second claim of the corollary. First consider the case ε = 0. Note that in

this case q0 = 2. Furthermore, by the first claim of Lemma 9, φ0(x) = x−1
2 , and hence the

value of κ given by the claim is 2 (as expected).
Assume now ε > 0. This implies that q0 < 2, and hence, by the third claim of

Lemma 3, for any 0 ≤ x ≤ 1 we have −x
φε(1−x) ≤ q0 < 2 = q. Hence the second clause in the

definition of κ2,q in Definition 1 does not apply. The remaining two clauses give the claim,
as stated.

Proofs of Comments to Theorem 1

Some of the claims in these comments require a proof. These claims are restated and
proved in the following lemma.

Lemma 10.

• If q ≥ 2 then for any 0 < ε < 1
2 the function κ2,q(x, ε) starts as a constant-

(
1 + (1− 2ε)2)

function up to some x = x(q, ε) > 0, and becomes strictly decreasing after that. For 1 < q < 2
there is a value 0 < ε(q) < 1

2 , such that for all ε ≤ ε(q) the function κ2,q(x, ε) is strictly
decreasing (in which case we say that x(q, ε) = 0). However, x(q, ε) > 0 for all ε > ε(q).
The function ε(q) decreases with q (in particular, ε(q) = 0 for g ≥ 2). The function x(q, ε)
increases both in q and in ε.

• The function κ2,1(x, ε) = − x
φε(1−x) is strictly decreasing in its first argument for any

0 < ε < 1
2 . It satisfies κ2,1(0, ε) = limx→0 κ2,1(x, ε) = 1 + (1− 2ε)2, for all 0 ≤ ε ≤ 1

2 .
• Let f be a non-constant function on {0, 1}n. Let 0 < ε < 1

2 . Let F(q) = Ff ,ε(q) =

κ2,q

(
Entq

(
f
‖ f ‖1

)
/n, ε

)
. There is a unique value 1 < q( f , ε) ≤ 1 + (1− 2ε)2 of q for which

F(q) = q. Moreover, q( f , ε) = minq≥1 F(q). Furthermore, limε→0 q( f , ε) = 2 for any f .

Proof. The first claim of the lemma follows from the properties of κ2,q as shown in the

proof of Theorem 1. In particular, it is easy to see that for q ≤ 2 we have ε(q) =
1−
√

q−1
2

and for ε ≥ ε(q) we have x(q, ε) =
q−(1+(1−2ε)2)

(1+(1−2ε)2)·(q−1) . The claim that ε(q) decreases with q
and that x(q, ε) increases in both q and ε follows by direct verification.
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The second claim of the lemma follows immediately from the third claim of Lemma 3.
We pass to the third claim of the lemma. Note that the function x(q) = Entq

(
f
‖ f ‖1

)
/n

is positive and strictly increasing in q. We need the following auxiliary claim.

Lemma 11. The function y(q) = q−1
q · x(q) +

1
q is strictly decreasing in q.

Proof of Lemma 11. Assume w.l.o.g. that f ≥ 0 and that E f = 1. Let P = f
2n be a

distribution on {0, 1}n. A simple calculation gives that

y(q) = 1 +
1
n
· log2


 ∑

a∈{0,1}n
P(a)q

 1
q
,

which is strictly decreasing in q, by Hölder’s inequality.

We proceed with the proof of of the third claim of Lemma 10. Let q0 = 1 + (1− 2ε)2.
We claim, first, that F is strictly increasing on q0 ≤ q < ∞. In fact, for these values of q the
second clause of Definition 1 does not apply (by the third claim of Lemma 3) and we have

κ2,q(x, ε) =

{
q0 if y ≤ 1

q0
α0−1

φε(α0)
if y > 1

q0

,

where y = y(q) and α0 is determined by 1− α0 − α0φε(α0)
1−α0

= y. The claim now follows by
combining Lemma 11, and the third and fourth claims of Lemma 3.

Next, we claim that there exists a unique value 1 ≤ q = q∗ ≤ q0 for which −x
φε(1−x) = q

(here x = x(q)). Moreover, F decreases for 1 ≤ q ≤ q∗ and increases for q ≥ q∗. Finally,
F(q∗) = q∗. Observe that verifying these claims will essentially complete the proof of the
third claim of Lemma 10 (apart from the fact that limε→0 q( f , ε) = 2).

In fact, by the first and third claims of Lemma 3, and the fact that x is strictly increasing
in q, the function −x

φε(1−x) is strictly decreasing in q, taking values between 2
log2

(
4

q0

) and

q0. This means that it has a unique intersection q = q∗ with the function q in [1, q0]. Next,
observe that by Definition 1 for q ≤ q0 we have

κ2,q(x, ε) =

{
− x

φε(1−x) if − x
φε(1−x) ≥ q

α0−1
φε(α0)

if − x
φε(1−x) ≤ q

This means that for q < q∗ we have F(q) = κ2,q(x, ε) = − x
φε(1−x) , which is decreasing

in q, and for for q > q∗ we have F(q) = α0−1
φε(α0)

, which increases in q . Finally, for q = q∗, we
have F(q) = − x

φε(1−x) = q.

It remains to verify that limε→0 q( f , ε) = 2. By the first claim of Lemma 9, φ0(x) = x−1
2 .

This means that for any 0 < x ≤ 1 we have limε→0
−x

φε(1−x) = 2. The claim follows since,

by the preceding discussion, q = q( f , ε) = −x(q)
φε(1−x(q)) .
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