Recent Comments
-
Recent Posts
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- Igor Pak: How I chose Enumerative Combinatorics
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Noga Alon and Udi Hrushovski won the 2022 Shaw Prize
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Past and Future Events
- Joshua Hinman proved Bárány’s conjecture on face numbers of polytopes, and Lei Xue proved a lower bound conjecture by Grünbaum.
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- Combinatorial Convexity: A Wonderful New Book by Imre Bárány
Top Posts & Pages
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Igor Pak: How I chose Enumerative Combinatorics
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Richard Stanley: How the Proof of the Upper Bound Theorem (for spheres) was Found
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- The Argument Against Quantum Computers - A Very Short Introduction
- A sensation in the morning news - Yaroslav Shitov: Counterexamples to Hedetniemi's conjecture.
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- To cheer you up in difficult times 13: Triangulating real projective spaces with subexponentially many vertices
RSS
Monthly Archives: October 2015
Convex Polytopes: Seperation, Expansion, Chordality, and Approximations of Smooth Bodies
I am happy to report on two beautiful results on convex polytopes. One disproves an old conjecture of mine and one proves an old conjecture of mine. Loiskekoski and Ziegler: Simple polytopes without small separators. Does Lipton-Tarjan’s theorem extends to high … Continue reading
Igor Pak’s collection of combinatorics videos
The purpose of this short but valuable post is to bring to your attention Igor Pak’s Collection of Combinatorics Videos
EDP Reflections and Celebrations
The Problem In 1932, Erdős conjectured: Erdős Discrepancy Conjecture (EDC) [Problem 9 here] For any constant , there is an such that the following holds. For any function , there exists an and a such that For any , … Continue reading