Recent Comments
-
Recent Posts
- Algorithmic Game Theory: Past, Present, and Future
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- Igor Pak: How I chose Enumerative Combinatorics
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Noga Alon and Udi Hrushovski won the 2022 Shaw Prize
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Past and Future Events
- Joshua Hinman proved Bárány’s conjecture on face numbers of polytopes, and Lei Xue proved a lower bound conjecture by Grünbaum.
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
Top Posts & Pages
- Algorithmic Game Theory: Past, Present, and Future
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- The Argument Against Quantum Computers - A Very Short Introduction
- Oliver Janzer and Benny Sudakov Settled the Erdős-Sauer Problem
- Combinatorics, Mathematics, Academics, Polemics, ...
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- Richard Stanley: Enumerative and Algebraic Combinatorics in the1960’s and 1970’s
- TYI 30: Expected number of Dice throws
- Game Theory 2021
RSS
Tag Archives: Percolation
Second third of my ICM 2018 paper – Three Puzzles on Mathematics, Computation and Games. Corrections and comments welcome
Update: Here is a combined version of all three parts: Three puzzles on mathematics computations and games. Thanks for the remarks and corrections. More corrections and comments welcome. Dear all, here is the draft of the second third of my paper … Continue reading
Two Delightful Major Simplifications
Arguably mathematics is getting harder, although some people claim that also in the old times parts of it were hard and known only to a few experts before major simplifications had changed matters. Let me report here about two recent remarkable simplifications … Continue reading
Analysis of Boolean Functions week 5 and 6
Lecture 7 First passage percolation 1) Models of percolation. We talked about percolation introduced by Broadbent and Hammersley in 1957. The basic model is a model of random subgraphs of a grid in n-dimensional space. (Other graphs were considered later as … Continue reading
Posted in Combinatorics, Computer Science and Optimization, Probability, Teaching
Tagged Arrow's theorem, Percolation
Leave a comment
Noise Sensitivity and Percolation. Lecture Notes by Christophe Garban and Jeff Steif
Lectures on noise sensitivity and percolation is a new beautiful monograph by Christophe Garban and Jeff Steif. (Some related posts on this blog: 1, 2, 3, 4, 5)
Posted in Combinatorics, Probability
Tagged Christoph Garban, Jeff Steif, Noise, Noise-sensitivity, Percolation
Leave a comment
A Problem on Planar Percolation
Conjecture (Gady Kozma): Prove that the critical probability for planar percolation on a Cayley graph of the group is always an algebraic number. Gady mentioned this conjecture in his talk here about percolation on infinite Cayley graphs. (Update April 30: Today Gady mentioned … Continue reading
Noise Sensitivity Lecture and Tales
A lecture about Noise sensitivity Several of my recent research projects are related to noise, and noise was also a topic of a recent somewhat philosophical post. My oldest and perhaps most respectable noise-related project was the work with Itai Benjamini and Oded … Continue reading