Recent Comments

Recent Posts
 Laci Babai Visits Israel!
 Polymath10 conclusion
 Is HeadsUp Poker in P?
 The Median Game
 International mathematics graduate studies at the Hebrew University of Jerusalem
 Polynomial Method Workshop
 Amazing: Stefan Glock, Daniela Kühn, Allan Lo, and Deryk Osthus give a new proof for Keevash’s Theorem. And more news on designs.
 The US Elections and Nate Silver: Informtion Aggregation, Noise Sensitivity, HEX, and Quantum Elections.
 Avifest live streaming
Top Posts & Pages
 Laci Babai Visits Israel!
 Polymath10 conclusion
 About Conjectures: Shmuel Weinberger
 The Median Game
 Is HeadsUp Poker in P?
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 'Gina Says'
RSS
Tag Archives: Percolation
Two Delightful Major Simplifications
Arguably mathematics is getting harder, although some people claim that also in the old times parts of it were hard and known only to a few experts before major simplifications had changed matters. Let me report here about two recent remarkable simplifications … Continue reading
Analysis of Boolean Functions week 5 and 6
Lecture 7 First passage percolation 1) Models of percolation. We talked about percolation introduced by Broadbent and Hammersley in 1957. The basic model is a model of random subgraphs of a grid in ndimensional space. (Other graphs were considered later as … Continue reading
Posted in Combinatorics, Computer Science and Optimization, Probability, Teaching
Tagged Arrow's theorem, Percolation
Leave a comment
Noise Sensitivity and Percolation. Lecture Notes by Christophe Garban and Jeff Steif
Lectures on noise sensitivity and percolation is a new beautiful monograph by Christophe Garban and Jeff Steif. (Some related posts on this blog: 1, 2, 3, 4, 5)
Posted in Combinatorics, Probability
Tagged Christoph Garban, Jeff Steif, Noise, Noisesensitivity, Percolation
Leave a comment
A Problem on Planar Percolation
Conjecture (Gady Kozma): Prove that the critical probability for planar percolation on a Cayley graph of the group is always an algebraic number. Gady mentioned this conjecture in his talk here about percolation on infinite Cayley graphs. (Update April 30: Today Gady mentioned … Continue reading
Noise Sensitivity Lecture and Tales
A lecture about Noise sensitivity Several of my recent research projects are related to noise, and noise was also a topic of a recent somewhat philosophical post. My oldest and perhaps most respectable noiserelated project was the work with Itai Benjamini and Oded … Continue reading