Recent Comments
-
Recent Posts
- To cheer you up in difficult times 21: Giles Gardam lecture and new result on Kaplansky’s conjectures
- Nostalgia corner: John Riordan’s referee report of my first paper
- At the Movies III: Picture a Scientist
- At the Movies II: Kobi Mizrahi’s short movie White Eye makes it to the Oscar’s short list.
- And the Oscar goes to: Meir Feder, Zvi Reznic, Guy Dorman, and Ron Yogev
- Thomas Vidick: What it is that we do
- To cheer you up in difficult times 20: Ben Green presents super-polynomial lower bounds for off-diagonal van der Waerden numbers W(3,k)
- To cheer you up in difficult times 19: Nati Linial and Adi Shraibman construct larger corner-free sets from better numbers-on-the-forehead protocols
- Possible future Polymath projects (2009, 2021)
Top Posts & Pages
- To Cheer You Up in Difficult Times 15: Yuansi Chen Achieved a Major Breakthrough on Bourgain's Slicing Problem and the Kannan, Lovász and Simonovits Conjecture
- To cheer you up in difficult times 21: Giles Gardam lecture and new result on Kaplansky's conjectures
- TYI 30: Expected number of Dice throws
- 8866128975287528³+(-8778405442862239)³+(-2736111468807040)³
- The Argument Against Quantum Computers - A Very Short Introduction
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Amazing: Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen proved that MIP* = RE and thus disproved Connes 1976 Embedding Conjecture, and provided a negative answer to Tsirelson's problem.
- Possible future Polymath projects (2009, 2021)
- Photonic Huge Quantum Advantage ???
RSS
Tag Archives: Borsuk’s conjecture
Around Borsuk’s Conjecture 3: How to Save Borsuk’s conjecture
Borsuk asked in 1933 if every bounded set K of diameter 1 in can be covered by d+1 sets of smaller diameter. A positive answer was referred to as the “Borsuk Conjecture,” and it was disproved by Jeff Kahn and me in 1993. … Continue reading
Andriy Bondarenko Showed that Borsuk’s Conjecture is False for Dimensions Greater Than 65!
The news in brief Andriy V. Bondarenko proved in his remarkable paper The Borsuk Conjecture for two-distance sets that the Borsuk’s conjecture is false for all dimensions greater than 65. This is a substantial improvement of the earlier record (all dimensions … Continue reading
A Weak Form of Borsuk Conjecture
Problem: Let P be a polytope in with n facets. Is it always true that P can be covered by n sets of smaller diameter? I also asked this question over mathoverflow, with some background and motivation.
Around Borsuk’s Conjecture 1: Some Problems
Greetings to all! Karol Borsuk conjectured in 1933 that every bounded set in can be covered by sets of smaller diameter. In a previous post I described the counterexample found by Jeff Kahn and me. I will devote a few posts … Continue reading
The Combinatorics of Cocycles and Borsuk’s Problem.
Cocycles Definition: A -cocycle is a collection of -subsets such that every -set contains an even number of sets in the collection. Alternative definition: Start with a collection of -sets and consider all -sets that contain an odd number of members … Continue reading
Raigorodskii’s Theorem: Follow Up on Subsets of the Sphere without a Pair of Orthogonal Vectors
Andrei Raigorodskii (This post follows an email by Aicke Hinrichs.) In a previous post we discussed the following problem: Problem: Let be a measurable subset of the -dimensional sphere . Suppose that does not contain two orthogonal vectors. How large … Continue reading
Borsuk’s Conjecture
Karol Borsuk conjectured in 1933 that every bounded set in can be covered by sets of smaller diameter. Jeff Kahn and I found a counterexample in 1993. It is based on the Frankl-Wilson theorem. Let be the set of vectors of length . … Continue reading