### Recent Comments

Giving a talk at Eli… on Academic Degrees and Sex Johan Aspegren on To Cheer You Up in Difficult T… To cheer you up in d… on Another sensation – Anni… Gil Kalai on To Cheer You Up in Difficult T… Gil Kalai on To Cheer You Up in Difficult T… Alexander Barvinok on To Cheer You Up in Difficult T… Kevin on To Cheer You Up in Difficult T… Gil Kalai on To Cheer You Up in Difficult T… Arseniy on To Cheer You Up in Difficult T… Alexander Barvinok on To Cheer You Up in Difficult T… uniform on To Cheer You Up in Difficult T… Arseniy on To Cheer You Up in Difficult T… -
### Recent Posts

- Giving a talk at Eli and Ricky’s geometry seminar. (October 19, 2021)
- To cheer you up in difficult times 32, Annika Heckel’s guest post: How does the Chromatic Number of a Random Graph Vary?
- To Cheer You Up in Difficult Times 31: Federico Ardila’s Four Axioms for Cultivating Diversity
- Dream a Little Dream: Quantum Computer Poetry for the Skeptics (Part I, mainly 2019)
- To Cheer you up in difficult times 30: Irit Dinur, Shai Evra, Ron Livne, Alex Lubotzky, and Shahar Mozes Constructed Locally Testable Codes with Constant Rate, Distance, and Locality
- To cheer you up in difficult times 29: Free will, predictability and quantum computers
- Alef’s corner: Mathematical research
- Let me tell you about three of my recent papers
- Mathematical news to cheer you up

### Top Posts & Pages

- Giving a talk at Eli and Ricky's geometry seminar. (October 19, 2021)
- Academic Degrees and Sex
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- The Argument Against Quantum Computers - A Very Short Introduction
- To Cheer You Up in Difficult Times 31: Federico Ardila's Four Axioms for Cultivating Diversity
- Richard Stanley: How the Proof of the Upper Bound Theorem (for spheres) was Found
- To cheer you up in difficult times 32, Annika Heckel's guest post: How does the Chromatic Number of a Random Graph Vary?
- Amazing: Karim Adiprasito proved the g-conjecture for spheres!
- TYI 30: Expected number of Dice throws

### RSS

# Category Archives: Open discussion

## Possible future Polymath projects (2009, 2021)

What will be our next polymath project? A polymath project (Wikipedia) is a collaboration among mathematicians to solve important and difficult mathematical problems by coordinating many mathematicians to communicate with each other on finding the best route to the solution. … Continue reading

Posted in Combinatorics, Mathematics over the Internet, Open discussion
Tagged polymath, Polymath proposals, Tim Gowers
30 Comments

## Avi Wigderson’s: “Integrating computational modeling, algorithms, and complexity into theories of nature, marks a new scientific revolution!” (An invitation for a discussion.)

The cover of Avi Wigderson’s book “Mathematics and computation” as was first exposed to the public in Avi’s Knuth Prize videotaped lecture. (I had trouble with 3 of the words: What is EGDE L WONK 0? what is GCAAG?GTAACTC … Continue reading

## Answer to TYI 37: Arithmetic Progressions in 3D Brownian Motion

Consider a Brownian motion in three dimensional space. We asked (TYI 37) What is the largest number of points on the path described by the motion which form an arithmetic progression? (Namely, , so that all are equal.) Here is … Continue reading

Posted in Combinatorics, Open discussion, Probability
Tagged Brownian motion, Gady Kozma, Itai Benjamini
1 Comment

## Are Natural Mathematical Problems Bad Problems?

One unique aspect of the conference “Visions in Mathematics Towards 2000” (see the previous post) was that there were several discussion sessions where speakers and other participants presented some thoughts about mathematics (or some specific areas), discussed and argued. In … Continue reading

Posted in Combinatorics, Conferences, Open discussion, What is Mathematics
Tagged Misha Gromov
4 Comments

## Is it Legitimate/Ethical for Google to close Google+?

Update April 2, 2019: the links below are not working anymore. Google Plus is a nice social platform with tens of millions participants. I found it especially nice for scientific posts, e.g. by John Baez, Moshe Vardi, or about symplectic … Continue reading

## 10 Milestones in the History of Mathematics according to Nati and Me

Breaking news: David Harvey and Joris Van Der Hoeven. Integer multiplication in time O(nlogn). 2019. (I heard about it from Yoni Rozenshein on FB (חפירות על מתמטיקה); update GLL post. ) _____ Update: There were many interesting comments here and … Continue reading

## Why is Mathematics Possible: Tim Gowers’s Take on the Matter

In a previous post I mentioned the question of why is mathematics possible. Among the interesting comments to the post, here is a comment by Tim Gowers: “Maybe the following would be a way of rephrasing your question. We know … Continue reading

Posted in Open discussion, Philosophy, What is Mathematics
Tagged Foundations of Mathematics, Open discussion, Philosophy, Tim Gowers
22 Comments

## Why is mathematics possible?

Spectacular advances in number theory Last weeks we heard about two spectacular results in number theory. As announced in Nature, Yitang Zhang proved that there are infinitely many pairs of consecutive primes which are at most 70 million apart! This is a sensational achievement. … Continue reading

## Polymath Reflections

Polymath is a collective open way of doing mathematics. It started over Gowers’s blog with the polymath1 project that was devoted to the Density Hales Jewett problem. Since then we had Polymath2 related to Tsirelson spaces in Banach space theory , an intensive Polymath4 devoted … Continue reading

## When It Rains It Pours

After our success in exploring the phrase “more or less” in many languages here is a task of a similar nature There is a saying in Hebrew: “Troubles come in packages” צרות באות בצרורות “Tzarot Baot bitzrorot”. I am curious about analogs in other … Continue reading