Tag Archives: Noga Alon

News (mainly polymath related)

Update (Jan 21) j) Polymath11 (?) Tim Gowers’s proposed a polymath project on Frankl’s conjecture. If it will get off the ground we will have (with polymath10) two projects running in parallel which is very nice. (In the comments Jon Awbrey gave … Continue reading

Posted in Combinatorics, Conferences, Mathematics over the Internet, Polymath10, Polymath3, Updates | Tagged , , , , , , , | 11 Comments

NogaFest, NogaFormulas, and Amazing Cash Prizes

Ladies and gentlemen,  a conference celebrating Noga Alon’s 60th birthday is coming on January. It will take place at Tel Aviv University on January 17-21. Here is the event webpage. Don’t miss the event !  Cash Prizes! The poster includes 15 … Continue reading

Posted in Combinatorics, Conferences, Updates | Tagged , | 30 Comments

A lecture by Noga

Noga with Uri Feige among various other heroes A few weeks ago I devoted a post to the 240-summit conference for Péter Frankl, Zoltán Füredi, Ervin Győri and János Pach, and today I will bring you the slides of Noga … Continue reading

Posted in Combinatorics, Conferences | Tagged , , , , , , | Leave a comment

My Mathematical Dialogue with Jürgen Eckhoff

Jürgen Eckhoff, Ascona 1999 Jürgen Eckhoff is a German mathematician working in the areas of convexity and combinatorics. Our mathematical paths have met a remarkable number of times. We also met quite a few times in person since our first … Continue reading

Posted in Combinatorics, Convex polytopes, Open problems | Tagged , , , , , | 1 Comment

Cap Sets, Sunflowers, and Matrix Multiplication

This post follows a recent paper On sunflowers  and matrix multiplication by Noga Alon, Amir Spilka, and Christopher Umens (ASU11) which rely on an earlier paper Group-theoretic algorithms for matrix multiplication, by Henry Cohn, Robert Kleinberg, Balasz Szegedy, and Christopher Umans (CKSU05), … Continue reading

Posted in Combinatorics, Computer Science and Optimization, Open problems | Tagged , , , , , , | 6 Comments

Test Your Intuition (14): A Discrete Transmission Problem

Recall that the -dimensional discrete cube is the set of all binary vectors ( vectors) of length n. We say that two binary vectors are adjacent if they differ in precisely one coordinate. (In other words, their Hamming distance is 1.) This … Continue reading

Posted in Combinatorics, Test your intuition | Tagged , | 35 Comments