Recent Comments
-
Recent Posts
- Peter Cameron: Doing research
- To cheer you up in difficult times 18: Beautiful drawings by Neta Kalai for my book: “Gina Says”
- Amazing: Simpler and more general proofs for the g-theorem by Stavros Argyrios Papadakis and Vasiliki Petrotou, and by Karim Adiprasito, Stavros Argyrios Papadakis, and Vasiliki Petrotou.
- Igor Pak: What if they are all wrong?
- To cheer you up in difficult times 17: Amazing! The Erdős-Faber-Lovász conjecture (for large n) was proved by Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus!
- Open problem session of HUJI-COMBSEM: Problem #5, Gil Kalai – the 3ᵈ problem
- To cheer you up in difficult times 16: Optimism, two quotes
- The Argument Against Quantum Computers – A Very Short Introduction
- Open problem session of HUJI-COMBSEM: Problem #4, Eitan Bachmat: Weighted Statistics for Permutations
Top Posts & Pages
- Peter Cameron: Doing research
- TYI 30: Expected number of Dice throws
- Amazing: Simpler and more general proofs for the g-theorem by Stavros Argyrios Papadakis and Vasiliki Petrotou, and by Karim Adiprasito, Stavros Argyrios Papadakis, and Vasiliki Petrotou.
- Igor Pak: What if they are all wrong?
- Chomskian Linguistics
- The Argument Against Quantum Computers - A Very Short Introduction
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- To cheer you up in difficult times 18: Beautiful drawings by Neta Kalai for my book: "Gina Says"
- Dan Romik on the Riemann zeta function
RSS
Tag Archives: Polytopes
The Polynomial Hirsch Conjecture: Discussion Thread
This post is devoted to the polymath-proposal about the polynomial Hirsch conjecture. My intention is to start here a discussion thread on the problem and related problems. (Perhaps identifying further interesting related problems and research directions.) Earlier posts are: The polynomial Hirsch … Continue reading
Posted in Convex polytopes, Open discussion, Open problems
Tagged Hirsch conjecture, Polytopes
115 Comments
The Polynomial Hirsch Conjecture: A proposal for Polymath3
This post is continued here. Eddie Kim and Francisco Santos have just uploaded a survey article on the Hirsch Conjecture. The Hirsch conjecture: The graph of a d-polytope with n vertices facets has diameter at most n-d. We devoted several … Continue reading
How the g-Conjecture Came About
Update: Slides from a great 2014 lecture on the g-conjecture by Lou Billera in the conference celebrating Richard Stanley’s 70th birthday. This post complements Eran Nevo’s first post on the -conjecture 1) Euler’s theorem Euler Euler’s famous formula for the … Continue reading
(Eran Nevo) The g-Conjecture I
This post is authored by Eran Nevo. (It is the first in a series of five posts.) Peter McMullen The g-conjecture What are the possible face numbers of triangulations of spheres? There is only one zero-dimensional sphere and it consists … Continue reading
Posted in Combinatorics, Convex polytopes, Guest blogger, Open problems
Tagged Carl Lee, Eran Nevo, face rings, g-conjecture, Lou Billera, Peter McMullen, Polytopes, Richard Stanley
12 Comments
Combinatorics, Mathematics, Academics, Polemics, …
1. About: My name is Gil Kalai and I am a mathematician working mainly in the field of Combinatorics. Within combinatorics, I work mainly on geometric combinatorics and the study of convex polytopes and related objects, and on the analysis of Boolean functions … Continue reading