Recent Comments

Recent Posts
 Open problem session of HUJICOMBSEM: Problem #1, Nati Linial – Turan type theorems for simplicial complexes.
 Péter Pál Pach and Richárd Palincza: a Glimpse Beyond the Horizon
 To cheer you up 14: Hong Liu and Richard Montgomery solved the Erdős and Hajnal’s odd cycle problem
 To cheer you up in difficult times 13: Triangulating real projective spaces with subexponentially many vertices
 Benjamini and Mossel’s 2000 Account: Sensitivity of Voting Schemes to Mistakes and Manipulations
 Test Your Intuition (46): What is the Reason for Maine’s Huge Influence?
 This question from Tim Gowers will certainly cheeer you up! and test your intuition as well!
 Three games to cheer you up.
 Cheerful Test Your Intuition (#45): Survey About Sisters and Brothers
Top Posts & Pages
 Open problem session of HUJICOMBSEM: Problem #1, Nati Linial  Turan type theorems for simplicial complexes.
 Péter Pál Pach and Richárd Palincza: a Glimpse Beyond the Horizon
 To cheer you up 14: Hong Liu and Richard Montgomery solved the Erdős and Hajnal's odd cycle problem
 TYI 30: Expected number of Dice throws
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 This question from Tim Gowers will certainly cheeer you up! and test your intuition as well!
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 Cheerful Test Your Intuition (#45): Survey About Sisters and Brothers
 8866128975287528³+(8778405442862239)³+(2736111468807040)³
RSS
Tag Archives: Richard Stanley
Beyond the gconjecture – algebraic combinatorics of cellular spaces I
The gconjecture for spheres is surely the one single conjecture I worked on more than on any other, and also here on the blog we had a sequence of posts about it by Eran Nevo (I,II,III,IV). Here is a great … Continue reading
Posted in Combinatorics, Convex polytopes, Geometry
Tagged Anders Bjorner, Bob MacPherson, Carl Lee, Ed Swartz, Eran Nevo, gconjecture, Günter Ziegler, Isabella Novik, June Huh, Kalle Karu, Karim Adiprasito, KazhdanLustig polynomials, Lou Billera, Marge Bayer, Peter McMullen, Richard Stanley, Ron Adin, Satoshi Murai, Tom Braden
10 Comments
Happy Birthday Richard Stanley!
This week we are celebrating in Cambridge MA , and elsewhere in the world, Richard Stanley’s birthday. For the last forty years, Richard has been one of the very few leading mathematicians in the area of combinatorics, and he found deep, profound, and … Continue reading
Richard Stanley: How the Proof of the Upper Bound Theorem (for spheres) was Found
The upper bound theorem asserts that among all ddimensional polytopes with n vertices, the cyclic polytope maximizes the number of facets (and kfaces for every k). It was proved by McMullen for polytopes in 1970, and by Stanley for general triangulations … Continue reading
(Eran Nevo) The gConjecture II: The Commutative Algebra Connection
Richard Stanley This post is authored by Eran Nevo. (It is the second in a series of five posts.) The gconjecture: the commutative algebra connection Let be a triangulation of a dimensional sphere. Stanley’s idea was to associate with a ring … Continue reading
(Eran Nevo) The gConjecture I
This post is authored by Eran Nevo. (It is the first in a series of five posts.) Peter McMullen The gconjecture What are the possible face numbers of triangulations of spheres? There is only one zerodimensional sphere and it consists … Continue reading
Posted in Combinatorics, Convex polytopes, Guest blogger, Open problems
Tagged Carl Lee, Eran Nevo, face rings, gconjecture, Lou Billera, Peter McMullen, Polytopes, Richard Stanley
12 Comments