Recent Comments
-
Recent Posts
- Peter Cameron: Doing research
- To cheer you up in difficult times 18: Beautiful drawings by Neta Kalai for my book: “Gina Says”
- Amazing: Simpler and more general proofs for the g-theorem by Stavros Argyrios Papadakis and Vasiliki Petrotou, and by Karim Adiprasito, Stavros Argyrios Papadakis, and Vasiliki Petrotou.
- Igor Pak: What if they are all wrong?
- To cheer you up in difficult times 17: Amazing! The Erdős-Faber-Lovász conjecture (for large n) was proved by Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus!
- Open problem session of HUJI-COMBSEM: Problem #5, Gil Kalai – the 3ᵈ problem
- To cheer you up in difficult times 16: Optimism, two quotes
- The Argument Against Quantum Computers – A Very Short Introduction
- Open problem session of HUJI-COMBSEM: Problem #4, Eitan Bachmat: Weighted Statistics for Permutations
Top Posts & Pages
- Peter Cameron: Doing research
- TYI 30: Expected number of Dice throws
- Amazing: Simpler and more general proofs for the g-theorem by Stavros Argyrios Papadakis and Vasiliki Petrotou, and by Karim Adiprasito, Stavros Argyrios Papadakis, and Vasiliki Petrotou.
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Igor Pak: What if they are all wrong?
- Chomskian Linguistics
- The Argument Against Quantum Computers - A Very Short Introduction
- To cheer you up in difficult times 18: Beautiful drawings by Neta Kalai for my book: "Gina Says"
- Dan Romik on the Riemann zeta function
RSS
Tag Archives: Paul Erdos
To cheer you up 14: Hong Liu and Richard Montgomery solved the Erdős and Hajnal’s odd cycle problem
The news: In 1981, Paul Erdős and András Hajnal asked whether the sum of the reciprocals of the odd cycle lengths in a graph with infinite chromatic number is necessarily infinite. Hong Liu and Richard Montgomery have just proved that … Continue reading
Posted in Combinatorics
Tagged András Hajnal, Carsten Thomassen, Hong Liu, Paul Erdos, Richard Montgomry
7 Comments
To cheer you up in difficult times 5: A New Elementary Proof of the Prime Number Theorem by Florian K. Richter
Here is a piece of news that will certainly cheer you up: Florian Richter found A new elementary proof of the prime number theorem. (I thank Tami Ziegler for telling me about the new result.) From left to right: Atle Selberg, … Continue reading
The Brown-Erdős-Sós 1973 Conjecture
Greetings from Oberwolfach. This week, there is a great meeting here on combinatorics. In this post I want to state the Brown-Erdős-Sós conjecture and one of its variants. The trigger was a beautiful talk I heard from Lior Gishboliner on … Continue reading
The (Random) Matrix and more
Three pictures, and a few related links. Van Vu Spoiler: In one of the most intense scenes, the protagonist, with his bare hands and against all odds, took care of the mighty Wigner semi-circle law in two different ways. (From … Continue reading
Posted in Combinatorics, People, What is Mathematics
Tagged Alfréd Rényi, András Hajnal, Catherine Rényi, Paul Erdos, Saharon Shelah, Sándor Szalai, Van Vu
1 Comment
Igor Pak will give the 2018 Erdős Lectures
Next week Igor Pak will give the 2018 Erdős Lectures (delayed from June) Here is the poster Combinatorics — Erdos lecture: Igor Pak (UCLA) “Counting linear extensions” Monday December 10 11:00-13:00 Location: IIAS Hall 130, Feldman building, Givat Ram … Continue reading
Posted in Combinatorics, Computer Science and Optimization, Updates
Tagged Erdos lecture, Igor Pak, Paul Erdos
Leave a comment
Preview: The solution by Keller and Lifshitz to several open problems in extremal combinatorics
Peter Frankl (right) and Zoltan Furedi The news A new paper by Nathan Keller and Noam Lifshitz settles several open problems in extremal combinatorics for wide range of parameters. Those include the three problems we mention next. Three central open … Continue reading
Posted in Combinatorics, Open problems, Updates
Tagged David Ellis, Ehud Friedgut, Michel Deza, Nathan Keller, Noam Lifshitz, Paul Erdos, Peter Frankl, Zoltán Füredi
1 Comment
Jozsef Solymosi is Giving the 2017 Erdős Lectures in Discrete Mathematics and Theoretical Computer Science
May 4 2:30-3:30; May 7 11:00-13:00; May 10 10:30-12:00 See the event webpage for titles and abstracts (or click on the picture below).
Polymath10: The Erdos Rado Delta System Conjecture
The purpose of this post is to start the polymath10 project. It is one of the nine projects (project 3d) proposed by Tim Gowers in his post “possible future polymath projects”. The plan is to attack Erdos-Rado delta system conjecture also known as the … Continue reading
Posted in Combinatorics, Polymath10
Tagged Alexandr Kostochka, Joel Spencer, Paul Erdos, Richard Rado
141 Comments
EDP Reflections and Celebrations
The Problem In 1932, Erdős conjectured: Erdős Discrepancy Conjecture (EDC) [Problem 9 here] For any constant , there is an such that the following holds. For any function , there exists an and a such that For any , … Continue reading