Recent Comments

Recent Posts
 Jirka
 AviFest, AviStories and Amazing Cash Prizes.
 Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!
 More Math from Facebook
 The Erdős Szekeres polygon problem – Solved asymptotically by Andrew Suk.
 The Quantum Computer Puzzle @ Notices of the AMS
 Three Conferences: Joel Spencer, April 2930, Courant; Joel Hass May 2022, Berkeley, Jean Bourgain May 2124, IAS, Princeton
Top Posts & Pages
 The Erdős Szekeres polygon problem  Solved asymptotically by Andrew Suk.
 Believing that the Earth is Round When it Matters
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 Mind Boggling: Following the work of Croot, Lev, and Pach, Jordan Ellenberg settled the cap set problem!
 Polymath10post 4: Back to the drawing board?
 Polymath 10 Emergency Post 5: The ErdosSzemeredi Sunflower Conjecture is Now Proven.
 Polymath 10 post 6: The ErdosRado sunflower conjecture, and the Turan (4,3) problem: homological approaches.
 Jirka
RSS
Tag Archives: Paul Erdos
Polymath10: The Erdos Rado Delta System Conjecture
The purpose of this post is to start the polymath10 project. It is one of the nine projects (project 3d) proposed by Tim Gowers in his post “possible future polymath projects”. The plan is to attack ErdosRado delta system conjecture also known as the … Continue reading
Posted in Combinatorics, Polymath10
Tagged Alexandr Kostochka, Joel Spencer, Paul Erdos, Richard Rado
138 Comments
EDP Reflections and Celebrations
The Problem In 1932, Erdős conjectured: Erdős Discrepancy Conjecture (EDC) [Problem 9 here] For any constant , there is an such that the following holds. For any function , there exists an and a such that For any , … Continue reading
Some old and new problems in combinatorics and geometry
Paul Erdős in Jerusalem, 1933 1993 Update: Here is a link to a draft of a paper* based on the first part of this lecture. Some old and new problems in combinatorial geometry I: Around Borsuk’s problem. I just came back from … Continue reading
Erdős’ Birthday
Paul Erdős was born on March 26, 1913 2013 a hundred years ago. This picture (from Ehud Friedgut’s homepage) was taken in September ’96 in a Chinese restaurant in Warsaw, a few days before Paul Erdős passed away. The other diners are Svante Janson, Tomasz Łuczack and … Continue reading
Extremal Combinatorics I: Extremal Problems on Set Systems
The “basic notion seminar” is an initiative of David Kazhdan who joined HU math department around 2000. People give series of lectures about basic mathematics (or not so basic at times). Usually, speakers do not talk about their own research and not even … Continue reading