Recent Comments

Recent Posts
 Preview: The solution by Keller and Lifshitz to several open problems in extremal combinatorics
 Basic Notions Seminar is Back! Helly Type Theorems and the Cascade Conjecture
 My Very First Book “Gina Says”, Now Published by “World Scientific”
 Itai Benjamini: Coarse Uniformization and Percolation & A Paper by Itai and me in Honor of Lucio Russo
 AfterDinner Speech for Alex Lubotzky
 Boaz Barak: The different forms of quantum computing skepticism
 Bálint Virág: Random matrices for Russ
 Test Your Intuition 33: The Great Free Will Poll
 Mustread book by Avi Wigderson
Top Posts & Pages
 Preview: The solution by Keller and Lifshitz to several open problems in extremal combinatorics
 Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
 Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
 TYI 30: Expected number of Dice throws
 Basic Notions Seminar is Back! Helly Type Theorems and the Cascade Conjecture
 The KadisonSinger Conjecture has beed Proved by Adam Marcus, Dan Spielman, and Nikhil Srivastava
 A Breakthrough by Maryna Viazovska Leading to the Long Awaited Solutions for the Densest Packing Problem in Dimensions 8 and 24
 Extremal Combinatorics I: Extremal Problems on Set Systems
 Stan Wagon, TYI 23: Ladies and Gentlemen: The Answer
RSS
Monthly Archives: November 2008
Sarkaria’s Proof of Tverberg’s Theorem 2
Karanbir Sarkaria 4. Sarkaria’s proof: Tverberg’s theorem (1965): Let be points in , . Then there is a partition of such that . Proof: We can assume that . First suppose that the points belong to the dimensional affine space in … Continue reading
Sarkaria’s Proof of Tverberg’s Theorem 1
Helge Tverberg Ladies and gentlemen, this is an excellent time to tell you about the beautiful theorem of Tverberg and the startling proof of Sarkaria to Tverberg’s theorem (two parts). A good place to start is Radon’s theorem. 1. The theorems of Radon, … Continue reading
Bad Advice; An Answer to an Old Trivia Question
A transparency and a lecture using transparencies. (No relation to the advice.) Our bad, worse and worst advice corner Bad – When you give a talk with transparencies or computer presentations, don’t go over the content of the transparencies but rather assume … Continue reading
Thomas Bayes and Probability
How can we assign probabilities in cases of uncertainty? And what is the nature of probabilities, to start with? And what is the rational mechanism for making a choice under uncertainty? Thomas Bayes lived in the eighteenth century. Bayes’ famous … Continue reading
About Conjectures: Shmuel Weinberger
The following paragraph is taken from the original “too personal for publication draft” of an article entitled ” ‘Final values’ of functors” by Shmuel Weinberger for a volume in honor of Guido Mislin’s retirement from ETH. (L’enseignement Mathematique 54(2008), 180182.) Shmuel’s remarks … Continue reading
Would you decide the election if you could?
One mental experiment I am fond of asking people (usually before elections) is this: Suppose that just a minute before the votes are counted you can change the outcome of the election (say, the identity of the winner, or even … Continue reading
Posted in Rationality
12 Comments
Impagliazzo’s Multiverse
Update (July 2009): Here are links to a related post on Lipton’s blog, and a conference announcement on Russell’s possible worlds. On the occasion of Luca’s post on his FOCS 2008 tutorial on averagecase complexity here is a reminder of Russell … Continue reading
Detrimental Noise
“Imagine there’s no heaven, it’s easy(?) if you try,” John Lennon Disclaimer: It is a reasonable belief (look here, and here), and an extremely reasonable working assumption (look here) that computationally superior quantum computers can be built. (This post and the draft … Continue reading