Recent Comments
-
Recent Posts
- The Trifference Problem
- Greatest Hits 2015-2022, Part II
- Greatest Hits 2015-2022, Part I
- Tel Aviv University Theory Fest is Starting Tomorrow
- Alef’s Corner
- A Nice Example Related to the Frankl Conjecture
- Amazing: Justin Gilmer gave a constant lower bound for the union-closed sets conjecture
- Barnabás Janzer: Rotation inside convex Kakeya sets
- Inaugural address at the Hungarian Academy of Science: The Quantum Computer – A Miracle or Mirage
Top Posts & Pages
- Amazing: Justin Gilmer gave a constant lower bound for the union-closed sets conjecture
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- A Nice Example Related to the Frankl Conjecture
- Aubrey de Grey: The chromatic number of the plane is at least 5
- Sarkaria's Proof of Tverberg's Theorem 1
- ICM 2022 awarding ceremonies (1)
- Amazing: Karim Adiprasito proved the g-conjecture for spheres!
RSS
Monthly Archives: November 2008
Sarkaria’s Proof of Tverberg’s Theorem 2
Karanbir Sarkaria 4. Sarkaria’s proof: Tverberg’s theorem (1965): Let be points in , . Then there is a partition of such that . Proof: We can assume that . First suppose that the points belong to the -dimensional affine space in … Continue reading
Sarkaria’s Proof of Tverberg’s Theorem 1
Helge Tverberg Ladies and gentlemen, this is an excellent time to tell you about the beautiful theorem of Tverberg and the startling proof of Sarkaria to Tverberg’s theorem (two parts). A good place to start is Radon’s theorem. 1. The theorems of Radon, … Continue reading
Bad Advice; An Answer to an Old Trivia Question
A transparency and a lecture using transparencies. (No relation to the advice.) Our bad, worse and worst advice corner Bad – When you give a talk with transparencies or computer presentations, don’t go over the content of the transparencies but rather assume … Continue reading
Thomas Bayes and Probability
How can we assign probabilities in cases of uncertainty? And what is the nature of probabilities, to start with? And what is the rational mechanism for making a choice under uncertainty? Thomas Bayes lived in the eighteenth century. Bayes’ famous … Continue reading
About Conjectures: Shmuel Weinberger
The following paragraph is taken from the original “too personal for publication draft” of an article entitled ” ‘Final values’ of functors” by Shmuel Weinberger for a volume in honor of Guido Mislin’s retirement from ETH. (L’enseignement Mathematique 54(2008), 180-182.) Shmuel’s remarks … Continue reading
Would you decide the election if you could?
One mental experiment I am fond of asking people (usually before elections) is this: Suppose that just a minute before the votes are counted you can change the outcome of the election (say, the identity of the winner, or even … Continue reading
Posted in Rationality
12 Comments
Impagliazzo’s Multiverse
Update (July 2009): Here are links to a related post on Lipton’s blog, and a conference announcement on Russell’s possible worlds. On the occasion of Luca’s post on his FOCS 2008 tutorial on average-case complexity here is a reminder of Russell … Continue reading
Detrimental Noise
“Imagine there’s no heaven, it’s easy(?) if you try,” John Lennon Disclaimer: It is a reasonable belief (look here, and here), and an extremely reasonable working assumption (look here) that computationally superior quantum computers can be built. (This post and the draft … Continue reading