Recent Comments
-
Recent Posts
- The Trifference Problem
- Greatest Hits 2015-2022, Part II
- Greatest Hits 2015-2022, Part I
- Tel Aviv University Theory Fest is Starting Tomorrow
- Alef’s Corner
- A Nice Example Related to the Frankl Conjecture
- Amazing: Justin Gilmer gave a constant lower bound for the union-closed sets conjecture
- Barnabás Janzer: Rotation inside convex Kakeya sets
- Inaugural address at the Hungarian Academy of Science: The Quantum Computer – A Miracle or Mirage
Top Posts & Pages
- Answer: Lord Kelvin, The Age of the Earth, and the Age of the Sun
- Amazing: Justin Gilmer gave a constant lower bound for the union-closed sets conjecture
- Amazing: Jinyoung Park and Huy Tuan Pham settled the expectation threshold conjecture!
- Quantum Computers: A Brief Assessment of Progress in the Past Decade
- A Nice Example Related to the Frankl Conjecture
- The Trifference Problem
- TYI 30: Expected number of Dice throws
- Sarkaria's Proof of Tverberg's Theorem 1
- Aubrey de Grey: The chromatic number of the plane is at least 5
RSS
Category Archives: Convexity
Bo’az Klartag and Joseph Lehec: The Slice Conjecture Up to Polylogarithmic Factor!
Bo’az Klartag (right) and Joseph Lehec (left) In December 2020, we reported on Yuansi Chen breakthrough result on Bourgain’s alicing problem and the Kannan Lovasz Simonovits conjecture. It is a pleasure to report on a further fantastic progress on these … Continue reading
Posted in Analysis, Computer Science and Optimization, Convexity, Geometry, Probability
Tagged Bo'az Klartag, Joseph Lehec
3 Comments
Test Your intuition 51
Suppose that and are two compact convex sets in space. Suppose that contains . Now consider two quantities is the average volume of a simplex forms by four points in drawn uniformly at random. is the average volume of a … Continue reading
Posted in Convexity, Geometry, Probability, Test your intuition
Tagged Test your intuition
12 Comments
ICM 2022 awarding ceremonies (1)
Hugo Duminil-Copin, June Huh, James Maynard and Maryna Viazovska were awarded the Fields Medal 2022 and Mark Braverman was awarded the Abacus Medal 2022. I am writing from Helsinki where I attended the meeting of the General Assembly of the … Continue reading
Past and Future Events
Quick announcements of past (recorded) and future events 1) Shachar Lovett was the Erdos Speaker for 2022 and his great talks are recorded. (Lecture 1, Tensor ranks and their applications lecture 2, The monomial structure of Boolean functions, lecture 3, … Continue reading
Posted in Combinatorics, Conferences, Convexity, Geometry, Quantum
Leave a comment
Chaim Even-Zohar, Tsviqa Lakrec, and Ran Tessler present: The Amplituhedron BCFW Triangulation
There is a recent breakthrough paper The Amplituhedron BCFW Triangulation by Chaim Even-Zohar, Tsviqa Lakrec, and Ran Tessler Abstract: The amplituhedron is a geometric object, introduced by Arkani-Hamed and Trnka (2013) in the study of scattering amplitudes in quantum … Continue reading
Posted in Combinatorics, Convex polytopes, Convexity, Physics
Tagged Amplituhedron, Chaim Even-Zohar, Ran Tessler, Tsviqa Lakrec
1 Comment
The Logarithmic Minkowski Problem
The logarithmic origin of Manhattan We are spending the fall semester in NYC at NYU and yesterday* I went to lunch with two old friends Deane Yang and Gaoyong Zhang. They told me about the logarithmic Minkowski problem, presented in the … Continue reading
Posted in Convex polytopes, Convexity, Updates
Tagged Deane Yang, Erwin Lutwak, Gaoyong Zhang, Károly Böröczky
2 Comments
To cheer you up in difficult times 22: some mathematical news! (Part 1)
To cheer you up, in these difficult times, here are (in two parts) some mathematical news that I heard in personal communications or on social media. (Maybe I will write later, in more details, about few of them that are … Continue reading
Posted in Combinatorics, Convex polytopes, Convexity, Geometry
2 Comments