Category Archives: Open problems

Jim Geelen, Bert Gerards, and Geoff Whittle Solved Rota’s Conjecture on Matroids

Gian Carlo Rota Rota’s conjecture I just saw in the Notices of the AMS a paper by Geelen, Gerards, and Whittle where they announce and give a high level description of their recent proof of Rota’s conjecture. The 1970 conjecture asserts … Continue reading

Posted in Combinatorics, Open problems, Updates | Tagged , , , , , , | 6 Comments

My Mathematical Dialogue with Jürgen Eckhoff

Jürgen Eckhoff, Ascona 1999 Jürgen Eckhoff is a German mathematician working in the areas of convexity and combinatorics. Our mathematical paths have met a remarkable number of times. We also met quite a few times in person since our first … Continue reading

Posted in Combinatorics, Convex polytopes, Open problems | Tagged , , , , , | 1 Comment

Navier-Stokes Fluid Computers

Smart fluid Terry Tao posted a very intriguing post on the Navier-Stokes equation, based on a recently uploaded paper Finite time blowup for an averaged three-dimensional Navier-Stokes equation. The paper proved a remarkable negative answer for the regularity conjecture for a certain … Continue reading

Posted in Analysis, Applied mathematics, Computer Science and Optimization, Open problems | Tagged , , , , , | 11 Comments

Amazing: Peter Keevash Constructed General Steiner Systems and Designs

Here is one of the central and oldest problems in combinatorics: Problem: Can you find a collection S of q-subsets from an n-element set X set so that every r-subset of X is included in precisely λ sets in the collection? … Continue reading

Posted in Combinatorics, Open problems | Tagged , , | 11 Comments

Many triangulated three-spheres!

The news Eran Nevo and Stedman Wilson have constructed triangulations with n vertices of the 3-dimensional sphere! This settled an old problem which stood open for several decades. Here is a link to their paper How many n-vertex triangulations does the 3 … Continue reading

Posted in Combinatorics, Convex polytopes, Geometry, Open problems | Tagged , | Leave a comment

Polymath 8 – a Success!

Yitang Zhang Update (July 22, ’14). The polymath8b paper “Variants of the Selberg sieve, and bounded intervals containing many primes“, is now on the arXiv. See also this post on Terry Tao’s blog. Since the last update, we also had here … Continue reading

Posted in Mathematics over the Internet, Number theory, Open problems | Tagged , , , , | 11 Comments

Around Borsuk’s Conjecture 3: How to Save Borsuk’s conjecture

Borsuk asked in 1933 if every bounded set K of diameter 1 in can be covered by d+1 sets of smaller diameter. A positive answer was referred to as the “Borsuk Conjecture,” and it was disproved by Jeff Kahn and me in 1993. … Continue reading

Posted in Combinatorics, Convexity, Geometry, Open problems | Tagged , , , | Leave a comment

Poznań: Random Structures and Algorithms 2013

   Michal Karonski (left) who built Poland’s probabilistic combinatorics group at Poznań, and a sculpture honoring the Polish mathematicians who first broke the Enigma machine (right, with David Conlon, picture taken by Jacob Fox). I am visiting now Poznań for the 16th … Continue reading

Posted in Combinatorics, Conferences, Open problems, Philosophy, Probability | Tagged , | Leave a comment

Some old and new problems in combinatorics and geometry

Paul Erdős in Jerusalem, 1933  1993 I just came back from a great Erdős Centennial conference in wonderful Budapest. I gave a lecture on old and new problems (mainly) in combinatorics and geometry (here are the slides), where I presented twenty … Continue reading

Posted in Combinatorics, Geometry, Open problems | Tagged | 4 Comments

Andriy Bondarenko Showed that Borsuk’s Conjecture is False for Dimensions Greater Than 65!

The news in brief Andriy V. Bondarenko proved in his remarkable paper The Borsuk Conjecture for two-distance sets  that the Borsuk’s conjecture is false for all dimensions greater than 65. This is a substantial improvement of the earlier record (all dimensions … Continue reading

Posted in Combinatorics, Geometry, Open problems | Tagged , , , , | 2 Comments